Physical Map Revision
Silver Bow Creek
Silver Bow County, Montana
Hydrologic Analysis Report

Montana Department of Environmental Quality
August 2, 2018

Pioneer Technical Services, Inc. 201 E. Broadway, Ste C, Helena Montana 59601
www.pioneer-technical.com
Physical Map Revision
Silver Bow Creek
Silver Bow County, Montana
Hydrologic Analysis Report

Prepared for:
State of Montana, Department of
Environmental Quality
P.O. Box 200901
Helena, MT 59620-0901

Prepared by:
Pioneer Technical Services, Inc.
106 Pronghorn Trail
Bozeman, Montana 59718
Physical Map Revision

Silver Bow Creek

Silver Bow County, Montana

Hydrologic Analysis Report

August 2, 2018

I hereby certify that all work products (maps, reports, etc.) prepared for this project were done so under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of Montana.

__
George Austiguy P.E.

Date: ___________________________ Montana Registration No. 9528 ________

Pioneer Technical Services, Inc.
106 Pronghorn Trail, Suite A
Bozeman, MT 59718
TABLE OF CONTENTS

1 Introduction .. 1
 1.1 Background Information ... 1
 1.2 Basin Description .. 3
 1.3 Flood History .. 3

2 Past Studies And Existing Flood Data .. 9
 2.1 Butte-Silver Bow Flood Insurance Study (1979) ... 9
 2.2 Silver Bow Creek Flood Modeling Study ... 10
 2.3 Silver Bow Creek Hydrologic Model .. 12
 2.4 Expedited Response Action Work Plan/Final Design Report for Lower Area One 12
 2.5 Draft Channel Stability Analysis of Silver Bow Creek Subarea 1 ... 13
 2.6 Channel Stability Analysis and Conceptual Design Report Subarea 2 .. 13
 2.7 Water-Resources Investigations Report 03-4308 ... 14
 2.8 Channel Stability Analysis and Conceptual Design Report Subarea 3 .. 15
 2.9 Scientific Investigations Report 2015-5019 .. 15
 2.10 Scientific Investigations Report 2018-5046 ... 17
 2.11 Additional Previous Studies ... 17

3 Hydrologic Analyses and Results .. 18
 3.1 USGS Stream Gage Analysis .. 18
 3.1.1 1% + Peak Flow Estimates .. 25
 3.2 Flow Change Node Locations .. 26
 3.3 Flood Frequency Estimates at Ungaged Sites ... 31
 3.3.1 Regional Regression Equation Method .. 31
 3.3.2 Weighting Gage Estimates with Regional Regression Equations Method..................... 34
 3.3.3 Two-Station Logarithmic Interpolation Method .. 40

4 Discussion ... 43

5 References ... 50

FIGURES

Figure 1 Silver Bow Creek Study Area ... 2
Figure 2 Silver Bow Creek at Opportunity, MT (12323600) ... 5
Figure 3 Silver Bow Creek below Blacktail Creek at Butte, MT (12323250) 6
Figure 4 Blacktail Creek at Butte, MT (12323240) .. 7
Figure 5 Silver Bow Creek above Blacktail Creek at Butte, MT (12323170) 8
Figure 6 USGS Flood Frequency Estimates Systematic Record 1984 through 2017 20
Figure 7 USGS Flood Frequency Estimates Congruent Record (1989-2017) vs Systematic Record . . . 23
Figure 8 USGS Flood Frequency Estimates Comparison 1989-2011 and 1989-2017 25
Figure 9 USGS 1%+ Flood Frequency Estimates 1989-2017 ... 26
Figure 10 Silver Bow Creek USGS Watersheds ... 29
Figure 11 Delineated Sub Basin Areas and Flow Node Locations .. 30
Figure 12 Silver Bow Creek Regional Regression Flood Frequency Estimates 34
Figure 13 1% AEP Peak Flow Regional Regression Results for Silver Bow Creek below Blacktail Creek at Butte, Montana ... 38
Figure 14 1% AEP Peak Flow Regional Regression Results for Silver Bow Creek at Opportunity, Montana .. 39
Figure 15 Silver Bow Creek Log Interpolation Gage Analysis Results 42
Figure 16 Butte Historical Annual Precipitation ... 46
Figure 17 Anaconda Historical Annual Precipitation ... 47
Figure 18 Recommended 1-Percent AEP Discharge for Each Location 49

TABLES

Table 1 Silver Bow Creek Floodplain Mapping Summary ... 9
Table 2 Butte-Silver Bow FIS Summary of Discharges ... 10
Table 3 Silver Bow Creek Flood Modeling Study Regional Flood Frequency Peak Discharge Summary ... 11
Table 4 Silver Bow Creek Flood Modeling Study HEC-1 Model Peak Discharge Summary ... 11
Table 5 Silver Bow Creek Flood Hydrologic Model Peak Flow Estimates 12
Table 6 Expedited Response Action Work Plan/Final Design Report for LAO OU Phase I Segment II Peak Flow Estimates ... 12
Table 7 Draft Channel Stability Analysis of Silver Bow Creek Subarea 1 Peak Discharge Summary ... 13
Table 8 Channel Stability Analysis and Conceptual Design Report Subarea 2 Peak Discharge Summary ... 14
Table 9 WRIR 03-4308 Silver Bow Creek Peak Discharge Summary 14
Table 10 Channel Stability Analysis and Conceptual Design Report Peak Discharge Summary ... 15
Table 11 SIR-2015-5019-C Silver Bow Creek Peak Discharge Summary 16
Table 12 SIR 2018-5046 Peak Discharge Summary ... 17
Table 13 Silver Bow Creek USGS Gage Summary ... 19
Table 14 Gage Flood Frequency Estimates Using Systematic Record 20
Table 15 Gage Flood Frequency Estimates Using Congruent Record 22
Table 16 USGS Flood Frequency Estimate Comparison 2011 and 2017 24
Table 17 USGS 1%+ Flood Frequency Estimates 2017 ... 26
Table 18 Flow Node and USGS Gage Station Information Used in Hydrologic Analyses 28
Table 19 Regional Regression Variables .. 33
Table 20 Regional Regression Flood Frequency Peak Flow Estimates 33
Table 21 Study Reach Peak Flow Estimates (Systematic Data through 2011) 33
Table 22 Variance Values for Regional Regression Weighted Analysis 36
Table 23 Study Reach Peak Flow Estimates (Congruent Data 1989 - 2017) 37
Table 24 Two-Station Log Interpolation Flow Node Peak Flow Estimates 41
Table 25 Recommended Flood Discharge Estimates Using Two-Station Logarithmic Interpolation Methods

APPENDICES

Appendix A: USGS Gage Flood Frequency Analysis ... A
Appendix B: Logarithmic Interpolation, Regional Regression and Weighted Calculations B
Appendix C: Digital Data and Calculation Files ... C
EXECUTIVE SUMMARY

Flood flow frequency calculations were conducted for the Streamside Tailings (SST) Operable Unit (OU), a 17-mile reach of Silver Bow Creek (SBC). The SBC study reach extends from the Deer Lodge/Silver Bow County boundary upstream to the Flood Insurance Rate Map (FIRM) panel 30093C0302E boundary, located approximately 250 feet upstream of the westbound Interstate 90 (I-90) bridge east of Butte, Montana. The FIRM panel 30093C0302E boundary is 200 feet upstream of the SST OU boundary. Information gathered from this analysis will be used for future floodplain studies and mapping projects.

The basin hydrology is primarily snowmelt driven, although significant flows can result from precipitation events. Land use in the SBC basin study reach is primarily agricultural with irrigated farming and ranching operations.

Silver Bow Creek is located west of the continental divide in western Montana. It is a major tributary to the Clark Fork River, which is a major tributary to the Pend Oreille River and upper Columbia River headwaters. Beginning at the Upper Silver Bow Creek and Blacktail Creek confluence in Butte, Montana, SBC flows northwest for approximately 34 miles before it combines with Warm Spring Creek to form the Clark Fork River. The entire SBC watershed area encompasses approximately 473 square miles. The study watershed basin area from the Deer Lodge County border to 200 feet upstream of the SST OU boundary (east side of Butte) is approximately 335 square miles.

The basin elevations within the SBC study area range from over 8,900 feet in the mountains to approximately 5,070 feet at the Deer Lodge County border. The watershed terrain varies from a high alpine environment at the river’s headwaters to a heavily cultivated landscape in the Deer Lodge valley with expansive irrigated pasture lands, bracketed by rolling foothills. The basin hydrology is primarily snowmelt driven.

The primary flooding cause on SBC is spring snowmelt mixed with rain (according to historical records). There are historical records from several U.S. Geological Survey (USGS) stream gages on the creek that date back to 1984, which document basin flood history.

Past SBC flood studies within Silver Bow County are numerous. Within the SBC basin, a Federal Emergency Management Agency (FEMA) Flood Insurance Survey (FIS) exists for Silver Bow County. Various reports dating from 1987 to 2015 (and detailed in this report) developed flood frequency estimates for SBC to support SST OU remedial action (RA) activities and to perform a regional regression flood frequency analyses.

For this hydrologic analysis, a flood flow frequency analysis was conducted to develop peak flow discharge estimates for the 50-, 10-, 4-, 2-, 1-, and 0.2-percent annual exceedance probability (AEP). The 1%+ (plus) AEP was also calculated. Peak flow estimates were calculated at 8 locations (flow nodes) within the watershed (2 gaged sites and 6 ungaged sites). Estimates at the active
gaged sites were conducted using Bulletin #17C methodologies. At the ungaged sites, peak flow estimates were calculated using the Two Site Logarithmic Interpolation method and Regional Regression Equation method. These methods conform to standard engineering practice.

The recommended gage-based flood flow frequency estimates from this study are lower than regional regression estimates and estimates from the current FIS and the previous design studies. The recommended gage-based flood flow frequency estimates are within 1 standard error of the regional regression peak flow estimates. This study’s peak discharge estimates are similar to the USGS studies.

The hydrologic analysis documented in this report conforms to FEMA standards for detailed/enhanced level studies, and the recommended flows of this analysis are deemed reliable and suitable for future floodplain studies and hydraulic analyses.
1 INTRODUCTION

Portions of SBC and its floodplain located in Silver Bow County were reconstructed under the SST OU Remedial Action (RA). Following the RA completion, the Montana Department of Environmental Quality (DEQ) contracted Pioneer Technical Services, Inc. (Pioneer) to update the FIRMs on SBC within the SST OU RA area through FEMA. As part of the FIRM updates, a comprehensive peak flow hydrologic analysis for a 17-mile SBC study reach located within the SST OU boundary was conducted. The study did not include tributaries. The SBC study reach extends from the Deer Lodge/Silver Bow County boundary upstream to the FIRM panel 30093C0302E boundary located approximately 250 feet upstream of the westbound I-90 bridge east of Butte, Montana. The FIRM panel 30093C0302E boundary is 200 feet upstream of the SST OU boundary. This study area watershed encompasses approximately 335 square miles. Information gathered from this analysis will be used for both enhanced level and base level hydraulic analyses and floodplain mapping. Figure 1 shows the project study reach.

1.1 Background Information

The FEMA administers the National Flood Insurance Program (NFIP). As part of this program, FEMA supports flood hazard studies and prepares flood hazard maps and related documents. The Silver Bow County study reach is located downstream of Butte; therefore, the SBC in Silver Bow County is sparsely populated in a predominantly rural environment. The existing floodplain mapping for SBC in the study area includes 13.2 miles of Approximate Zone A and 3.2 miles of Detailed Zone AE near Rocker, Montana, and near Fairmont Hot Springs Resort (towards Anaconda, Montana). The existing mapping study was completed in 1977.

Approximate Zone A flood maps are developed using approximate methodologies and are not based on detailed hydraulic analysis. This level of flood mapping is often used in rural areas with low populations. Base Flood Elevations (BFEs) or flood depths are not identified in Approximate Zone A mapping (a BFE is the computed elevation to which floodwater is estimated to rise during the base flood). As a result, areas designated with Zone A flood mapping are difficult for local communities to manage and administer.

Enhanced and base level mapping are similar in that both use standard hydrologic and hydraulic modeling methods to estimate BFEs and flood inundation areas. Both require the same topographic accuracy. However, base level mapping does not include floodway delineation, may not include a 500-year floodplain delineation, and may allow some flexibility in the acquisition and modeling of bathymetric and structure survey data.
The DEQ, in partnership with the Montana Department of Natural Resources and Conservation (DNRC), FEMA, and Butte-Silver Bow Local Government, initiated work to produce a new floodplain study along a reach of SBC in Silver Bow County. The SBC Floodplain Study will provide the groundwork for completing floodplain mapping along SBC. This report documents the hydrologic analysis methodology and results completed on SBC. The analysis includes peak discharge estimate calculations for the 50-, 10-, 4-, 2-, 1-, and 0.2-percent annual chance events at key flow change locations (such as significant tributary confluences, stream gages, and population centers) along the study reach. The hydrologic analysis also included calculation of the 1% + (plus) annual chance discharge estimates and conformed to FEMA standards for detailed/enhanced level studies (FEMA, 2018).

1.2 Basin Description

Silver Bow Creek combines with Warm Springs Creek to form the Clark Fork River, which is a major tributary to the Pend Oreille River and Columbia River’s upper headwaters located west of the continental divide in western Montana. The creek originates in the Deerlodge National Forest near the continental divide. The watershed is formed by the Pioneer and Highland Mountains. Beginning in Butte, Montana, at the Upper Silver Bow Creek and Blacktail Creek confluence, SBC flows northwest for approximately 34 miles before it combines with Warm Spring Creek to form the Clark Fork River near Warm Spring, Montana. The entire SBC watershed area encompasses approximately 473 square miles. The study watershed basin area upstream of the Deer Lodge/ Silver Bow County boundary is approximately 335 square miles.

The SBC basin elevations within the study area range from approximately 8,900 feet in the mountains to approximately 5,070 feet at the county border. The terrain varies from a high alpine environment in its headwaters to a heavily cultivated landscape in the Deer Lodge valley, with expansive irrigated pasture lands bracketed by rolling foothills. The basin hydrology is primarily snowmelt driven.

Land use in SBC basin is primarily agricultural with irrigated farming and ranching operations. The intensely farmed land is predominately located in the Deer Lodge Valley within the SBC floodplain.

1.3 Flood History

The primary flooding cause on SBC is spring snowmelt mixed with rain (according to historical records). The greatest flood on record for SBC occurred in June 1908. The Clark Fork Watershed Education Program (CFWEP, 2015) states that it was one of the most devastating floods to hit the region. In early June, the ground was already saturated from weeks of hard rain when temperatures dropped, and several inches of snow covered the area. As temperatures warmed, the drenched earth began to flood, sending torrents into the creek, which was estimated to be a mile in width. The flood forced residents to flee and railroads to shut down—even the mines in Butte, Montana, closed.
There are historical records from one USGS stream gage within the study area and three USGS stream gages near the study area that document flooding history. The gages are listed below:

1. Silver Bow Creek at Opportunity, MT (12323600)—referred to as SBC at Opportunity, MT (12323600).
2. Silver Bow Creek below Blacktail Creek at Butte, MT (12323250) —referred to as SBC below Blacktail Creek at Butte, MT (12323250).
3. Blacktail Creek at Butte, MT (12323240).
4. Silver Bow Creek above Blacktail Creek at Butte, MT (12323170)—referred to as SBC above Blacktail Creek at Butte, MT (12323170).

The SBC at Opportunity, MT (12323600) gage has a 29-year period of record (1989-2017). The annual peak flow record for the gage is shown in Figure 2. The gage is located downstream of the study area.

The SBC below Blacktail Creek at Butte, MT (12323250) gage has a 34-year period of record (1984-2017). The annual peak flow record for the gage is shown in Figure 3. The gage is located within the study area near the upstream boundary.

Blacktail Creek at Butte MT (12323240) gage has a 29-year period of record (1989-2017). The annual peak flow record for the gage is shown in Figure 3. The gage is located upstream of the study area on a main tributary to SBC.

The SBC above Blacktail Creek at Butte, MT (12323170) gage has an 11-year period of record (1984-1994). The annual peak flow record for the gage is shown in Figure 5. The gage is located upstream of the study area.

The AEP flows shown on Figure 2, Figure 3, Figure 4, and Figure 5 are based on previously published flood frequency analysis through Water Year 2011 (Scientific Investigations Report [SIR] 2015-5019-C) (Sando et al., 2015a).
Figure 2 shows that the peak flood of record for SBC at Opportunity, Montana, occurred in 1996 with a flow of 1,300 cubic feet per second (cfs), exceeding the 2% (50-yr) AEP flow of 1,210 cfs. The second highest flood on record occurred in 2011 with a flow of 772 cfs, exceeding the 10% (10-year) AEP flow of 718 cfs. The third highest flood on record occurred in 1989 with a flow of 654 cfs. The fourth highest flood on record occurred in 1997 with a flow of 648 cfs. In the 29-year period of record at the SBC at Opportunity, MT (12323600) gage, the 1996 and 2011 floods are the only flow events that exceeded the 10% (10-year) AEP flow.

Figure 2 Silver Bow Creek at Opportunity, MT (12323600)

1. Flood Frequency Based on Data
Figure 3 shows that the peak flood of record for SBC below Blacktail Creek occurred in 1998 with a flow of 447 cfs, exceeding the 2% (50-year) AEP flow of 435 cfs. The second highest flood on record occurred in 1990 and again in 1995 with a flow of 320 cfs. The third highest flood on record occurred in 2003 with a flow of 314 cfs. In the 34-year period of record at the SBC below Blacktail Creek at Butte, MT (12323250) gage, the 1998 flood is the only flow event that exceeded the 10% (10-year) AEP flow of 328 cfs.

Figure 3 Silver Bow Creek below Blacktail Creek at Butte, MT (12323250)
Figure 4 shows that the peak flood of record for Blacktail Creek occurred in 1995 with a flow of 303 cfs, exceeding the 10% (10-year) AEP flow of 241 cfs. The second highest flood on record occurred in 2003 with a flow of 234 cfs. The third highest flood on record occurred in 2011 with a flow of 230 cfs. In the 29-year period of record at the Blacktail Creek gage, the 1995 flood is the only flow event that exceeded the 10% (10-year) AEP flow.

Figure 4 Blacktail Creek at Butte, MT (12323240)
Figure 5 shows that the peak flood of record for SBC above Blacktail Creek occurred in 1990 with a flow of 57 cfs, exceeding the 10% (10-year) AEP flow of 24 cfs. The second highest flood on record occurred in 1986 and again in 1992 with a flow of 15 cfs. In the 11-year period of record at the SBC above Blacktail Creek at Butte, MT (12323170), the 1990 flood is the only flow event that exceeded the 10% (10-year) AEP flow.

Figure 5 Silver Bow Creek above Blacktail Creek at Butte, MT (12323170)

![Graph showing flood frequency based on data](image)
2 PAST STUDIES AND EXISTING FLOOD DATA

There are numerous past flood studies on SBC within Butte-Silver Bow County. Studies relevant to this hydrologic study are those that include peak flow frequency analyses. Within the SBC basin, a FEMA FIS exists for Silver Bow County. Table 1 shows a summary of SBC Floodplain Mapping.

Table 1 Silver Bow Creek Floodplain Mapping Summary

<table>
<thead>
<tr>
<th>County</th>
<th>Map Panel Summary</th>
<th>Study Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Community</td>
<td># of FIRM Panels</td>
</tr>
<tr>
<td>Silver Bow</td>
<td>Butte-Silver Bow</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: FEMA Map service Center.
SBC: Silver Bow Creek. mi: Miles measured along channel alignment

In addition to two FEMA FIS reports, there are three USGS reports and six other reports completed to support Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial activities that document flood frequency analysis on several gages along SBC. These studies and investigations are discussed in more detail in the following sections.

2.1 Butte-Silver Bow Flood Insurance Study (1979)

The initial Butte-Silver Bow FIS was issued in March of 1979 (USDHUD, 1979). As part of the FIS, SBC was studied using detailed and approximate methods. The hydrologic and hydraulic analyses were completed by Morrison-Maierle, Inc. in June 1977. The study area included the community of Butte-Silver Bow. The City of Butte and Silver Bow County were combined in 1977 to form a city-county government.

The FIS identified SBC near Rocker as an area of severe historic flooding. No other flood problem areas on SBC were identified. The area of SBC between Montana Street and the weed concentrator (concentrator located below the Berkeley Pit) had been straightened with embankments on both sides of the creek in some segments. This stretch has since been reconstructed following CERCLA remedial activities. Peak-discharge-drainage area relationships were developed using A Method for Estimating Magnitude and Frequency of Floods in Montana (Johnson and Omang, 1976) to estimate AEP peak discharges with recurrence intervals of 10, 50, 100, and 500 years for 4 ungaged sites. Table 2 provides the peak discharge summary for the 4 sites.

The Butte-Silver Bow FIS originally issued in 1979 was updated and reissued on January 6, 2012 (FEMA, 2012). The 2012 FIS did not update the hydrology and hydraulics information for SBC or include any new discussion of flood problems and flood protection measures.
Table 2 Butte-Silver Bow FIS Summary of Discharges

<table>
<thead>
<tr>
<th>Flooding Source and Location (Flow Node)</th>
<th>Drainage Area (sq mi)</th>
<th>Peak Discharges (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10-Year</td>
</tr>
<tr>
<td>SBC at Fairmont Hot Springs</td>
<td>323.7</td>
<td>1,672</td>
</tr>
<tr>
<td>SBC at the Town of Rocker</td>
<td>118.0</td>
<td>833</td>
</tr>
<tr>
<td>SBC at Montana Avenue</td>
<td>103.8</td>
<td>683</td>
</tr>
<tr>
<td>SBC at Confluence with Blacktail</td>
<td>21.8</td>
<td>104</td>
</tr>
</tbody>
</table>

sq mi: square miles. cfs: cubic feet per second. SBC: Silver Bow Creek.

2.2 Silver Bow Creek Flood Modeling Study

The SBC Flood Modeling Study was conducted in 1989 by CH2M Hill (CH2M Hill, 1989) for the Department of Health and Environmental Sciences Solid Hazardous Water Bureau, which was restructured under the Montana DEQ in 1994. The study developed probable maximum flood hydrographs for 12 gaged sites located within the Clark Fork River Basin, including 1 gaged site on SBC near Warm Springs, MT. The study also included a regional flood-frequency analysis for the 12 gaged sites using Bulletin 17 regression analysis methods described by the U.S. Water Resources Council (USWRC, 1976). Envelope curves were developed to show the estimated range from the regional flood-frequency analysis. From the envelope curves, upper and lower AEP peak discharges with recurrence intervals of 10, 25, and 100 years for 5 ungaged sites and 1 gaged site on SBC were estimated. Table 3 provides the peak discharge summary for the 6 sites on SBC.
Table 3 Silver Bow Creek Flood Modeling Study Regional Flood Frequency Peak Discharge Summary

<table>
<thead>
<tr>
<th>Flooding Source and Location (Flow Node)</th>
<th>Drainage Area (sq mi)</th>
<th>Peak Discharges (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10-Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower</td>
</tr>
<tr>
<td>SBC below Blacktail Creek (#12323240)</td>
<td>103</td>
<td>800</td>
</tr>
<tr>
<td>SBC below Canada Creek</td>
<td>117</td>
<td>850</td>
</tr>
<tr>
<td>SBC above Browns Gulch</td>
<td>166</td>
<td>1,100</td>
</tr>
<tr>
<td>SBC above German Gulch</td>
<td>266</td>
<td>1,550</td>
</tr>
<tr>
<td>SBC above Diversion Works</td>
<td>347</td>
<td>1,900</td>
</tr>
<tr>
<td>SBC at Old USGS Gage Site above Warm Springs Creek</td>
<td>452</td>
<td>2,300</td>
</tr>
</tbody>
</table>

SBC: Silver Bow Creek. sq mi: square miles. cfs: cubic feet per second.

A rainfall/runoff model was created using the HEC-1 Flood Hydrograph Package (USACE, 1985) to simulate river basin surface runoff response from precipitation and snowmelt. The HEC-1 model was calibrated to SBC basin flows using historic flood events from individual river basins to develop hydrographs for 23 SBC sub-basins. This calibrated rainfall-runoff model was used to estimate the SBC AEP peak discharges with recurrence intervals of 10, 25, and 100 years for 5 ungaged sites and 1 gaged site on SBC. Table 4 provides the peak discharge summary for the 6 sites on SBC. Table 4 shows that peak flows do not increase with an increase in drainage area due to hydrograph routing, hydrograph timing, and limited local inflow.

Table 4 Silver Bow Creek Flood Modeling Study HEC-1 Model Peak Discharge Summary

<table>
<thead>
<tr>
<th>Flooding Source and Location</th>
<th>Drainage Area (sq mi)</th>
<th>AEP Peak Discharges (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10-Year</td>
</tr>
<tr>
<td>SBC below Blacktail Creek at Butte, MT (#12323240)</td>
<td>103</td>
<td>1,270</td>
</tr>
<tr>
<td>SBC below Canada Creek</td>
<td>117</td>
<td>1,180</td>
</tr>
<tr>
<td>SBC above Browns Gulch</td>
<td>166</td>
<td>1,240</td>
</tr>
<tr>
<td>SBC above German Gulch</td>
<td>266</td>
<td>1,580</td>
</tr>
<tr>
<td>SBC above Diversion Works</td>
<td>347</td>
<td>2,190</td>
</tr>
<tr>
<td>SBC at Warm Springs, MT</td>
<td>452</td>
<td>2,490</td>
</tr>
</tbody>
</table>

SBC: Silver Bow Creek. sq mi: square miles. AEP: annual exceedance probability. cfs: cubic feet per second.
2.3 Silver Bow Creek Hydrologic Model

The SBC Hydrologic Model created by Clear Creek Hydrology (CCH) in 1997 (CCH, 1997) developed AEP peak discharges with recurrence intervals of 2, 10, 50, 100 years for the SBC below Blacktail Creek at Butte, MT gage using the Hydrologic Simulation Program – Fortran (EPA, 1993). The model used the 13 years of daily and peak flow data at the SBC below Blacktail Creek at Butte, MT gage. The modeling results were used in conjunction with meteorological data to synthesize a 96-year flow record. For the model, CCH then developed flood frequency estimates by fitting a flood frequency distribution to the synthesized peak flow data. Table 5 provides the peak discharge summary for the gage.

Table 5 Silver Bow Creek Flood Hydrologic Model Peak Flow Estimates

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>AEP Peak Discharges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2-Year</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>200</td>
</tr>
</tbody>
</table>

2.4 Expedited Response Action Work Plan/Final Design Report for Lower Area One

The Expedited Response Action Work Plan/Final Design Report for Lower Area One Operable Unit (LAO OU) Phase I Segment II was prepared in 1996 by ESA Consultants, Inc. The analysis estimated AEP peak discharges for the SBC below Blacktail Creek at Butte, MT gage using regional regression equations that were listed in USGS Water Resources Investigations Report (WRIR) 92-4048 (Omag, 1992). The AEP peak discharges were developed excluding and including the area drained by the Berkeley Pit. Table 6 lists the peak discharge summary for the gage.

Table 6 Expedited Response Action Work Plan/Final Design Report for LAO OU Phase I Segment II Peak Flow Estimates

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>Drainage Area (sq mi)</th>
<th>Peak Discharges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>100-Year</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>103¹</td>
<td>1783</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>125²</td>
<td>1889</td>
</tr>
</tbody>
</table>

¹. Drainage area excludes area that drains to the Berkeley Pit.
². Drainage area includes area that drains to the Berkeley Pit.
2.5 Draft Channel Stability Analysis of Silver Bow Creek Subarea 1

The Draft Channel Stability Analysis of SBC SST OU Subarea 1 was conducted in 1997 by Mussetter Engineering, Inc. and Inter-Fluve, Inc (Mussetter and Inter-Fluve, 1997). The analysis considered several methods to develop AEP peak discharges at the SBC below Blacktail Creek at Butte, MT gage. Flood Frequency estimates were developed using the following:

- Bulletin 17B methods for the 96-year CCH synthesized flow record.
- USGS WRIR 86-4027 Regional regression methods (Omand, Parrett, and Hull, 1986).

Table 7 provides the AEP peak discharge summary for the gage.

Table 7 Draft Channel Stability Analysis of Silver Bow Creek Subarea 1
Peak Discharge Summary

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>Method</th>
<th>Years of Record</th>
<th>2-Year</th>
<th>10-Year</th>
<th>50-Year</th>
<th>100-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>Bulletin 17B</td>
<td>13</td>
<td>229</td>
<td>325</td>
<td>395</td>
<td>422</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>Bulletin 17B</td>
<td>96</td>
<td>214</td>
<td>502</td>
<td>901</td>
<td>1,120</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>Regional Regression</td>
<td>NA</td>
<td>238</td>
<td>610</td>
<td>1,042</td>
<td>1,282</td>
</tr>
</tbody>
</table>

1. CCH peak flow record synthetic extension.

2.6 Channel Stability Analysis and Conceptual Design Report Subarea 2

The Channel Stability Analysis and Conceptual Design Report Subarea 2 was conducted in 2003 by Maxim Technologies and Mussetter Engineering, Inc. (Maxim & Mussetter, 2003). The analysis considered two methods to develop AEP peak discharges at the SBC below Blacktail Creek at Butte, MT and SBC at Opportunity, MT gages. The AEP peak discharges were estimated using the following:

- USGS WRIR 92-4048 Regional regression methods (Omand, 1992).

Table 8 provides the peak discharge summary.
Table 8 Channel Stability Analysis and Conceptual Design Report Subarea 2 Peak Discharge Summary

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>Method</th>
<th>Years of Record</th>
<th>AEP Peak Discharges (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-Year</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>Bulletin 17B</td>
<td>18</td>
<td>230</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>Regional Regression</td>
<td>NA</td>
<td>320</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>Bulletin 17B</td>
<td>13</td>
<td>310</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>Regional Regression</td>
<td>NA</td>
<td>930</td>
</tr>
</tbody>
</table>

2.7 Water-Resources Investigations Report 03-4308

The investigation for USGS WRIR 03-4308 developed AEP peak discharges with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through Water Year 1998 (Parrett and Johnson, 2004). The flood-frequency information was used in regression analyses to develop equations relating T-year floods to various basin and climatic characteristics, active-channel width, and bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Flood-frequency data typically were determined by fitting a log-Pearson Type III probability distribution using methods described by the Interagency Advisory Committee on Water Data (IACWD), Bulletin #17B (IACWD, 1982). Table 9 provides the WRIR 03-4308 peak discharge summary for 2 USGS gages on SBC and one on Blacktail Creek.

Table 9 WRIR 03-4308 Silver Bow Creek Peak Discharge Summary

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>Drainage Area (sq mi)</th>
<th>Years of Record</th>
<th>AEP Peak Discharges (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>284</td>
<td>10</td>
<td>663</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek Butte, MT</td>
<td>103</td>
<td>15</td>
<td>306</td>
</tr>
<tr>
<td>12323240</td>
<td>Blacktail Creek at Butte, MT</td>
<td>95.4</td>
<td>10</td>
<td>224</td>
</tr>
</tbody>
</table>

2.8 Channel Stability Analysis and Conceptual Design Report
Subarea 3

The Channel Stability Analysis and Conceptual Design Report, SST OU Subarea 3, was prepared in 2007 by Tetra Tech and Applied Geomorphology (Tetra Tech and AGI, 2007). The analysis considered two methods to develop AEP peak discharges at the Silver Bow Creek below Blacktail Creek at Butte, MT and Silver Bow Creek at Opportunity gages. The AEP peak discharges were estimated using the following methods:

- USGS WRIR 03-4308 Regional regression methods (Parrett and Johnson, 2004).

Table 10 provides the Bulletin 17B analysis and regional regression peak discharge summary for the two USGS gages on SBC.

Table 10 Channel Stability Analysis and Conceptual Design Report Peak Discharge Summary

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>Method</th>
<th>Years of Record</th>
<th>2-Year (cfs)</th>
<th>5-Year (cfs)</th>
<th>10-Year (cfs)</th>
<th>25-Year (cfs)</th>
<th>50-Year (cfs)</th>
<th>100-Year (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>Bulletin 17B</td>
<td>23</td>
<td>205</td>
<td>302</td>
<td>364</td>
<td>438</td>
<td>492</td>
<td>543</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>Regional Regression</td>
<td>NA</td>
<td>244</td>
<td>441</td>
<td>633</td>
<td>812</td>
<td>983</td>
<td>1,158</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>Bulletin 17B</td>
<td>18</td>
<td>281</td>
<td>526</td>
<td>730</td>
<td>1,034</td>
<td>1,293</td>
<td>1,581</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>Regional Regression</td>
<td>NA</td>
<td>694</td>
<td>1,209</td>
<td>1,710</td>
<td>2,127</td>
<td>2,545</td>
<td>2,967</td>
</tr>
</tbody>
</table>

2.9 Scientific Investigations Report 2015-5019

The USGS SIR 2015-5019-C included updated AEP peak discharges with AEPs of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent (return intervals of 1.5, 2, 2.33, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for 725 gaged sites in or near Montana, based on data through Water Year 2011 (Sando et al., 2015a). Flood-frequency data were determined by fitting a log-Pearson Type III probability distribution using methods described by the IACWD, Bulletin #17B (IACWD, 1982). The study was part of a larger study to develop an online StreamStats application for Montana, in conjunction with computing streamflow characteristics at gage stations, and estimate peak flow flood frequency at ungaged sites. Table 11 provides the SIR 2015-5019-C discharge summary for SBC gages.
Table 11 SIR-2015-5019-C Silver Bow Creek Peak Discharge Summary

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>Drainage Area (sq mi)</th>
<th>Years of Record</th>
<th>Peak Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200-year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500-year</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>343</td>
<td>23</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>718</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,210</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,460</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,730</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,120</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek Butte, MT</td>
<td>125</td>
<td>28</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>328</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>390</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>478</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>575</td>
</tr>
<tr>
<td>12323240</td>
<td>Blacktail Creek at Butte, MT</td>
<td>90.9</td>
<td>23</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>241</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>296</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>375</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>413</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>462</td>
</tr>
<tr>
<td>12323170</td>
<td>SBC above Blacktail Creek Butte, MT</td>
<td>21.7</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>256</td>
</tr>
</tbody>
</table>

The USGS SIR 2015-5019-F (Sando et al., 2015b) selected 537 gaging stations from the gage study. The 537 gaging stations were segregated based on the following criteria: contributing drainage area less than about 2,750 square miles, peak-flow records unaffected by major regulation, small redundancy with nearby stations, and representation of peak-flow frequencies at sites within Montana. The gaging stations on SBC at Opportunity, MT and below Blacktail Creek at Butte, MT were excluded from the dataset due to the redundancy of nearby stations; however, the Blacktail Creek at Butte, MT gage was included as well as the SBC at Warm Springs gage (downstream of the Opportunity gage in Deer Lodge County). The study used regression analyses to develop equations relating AEP flows to various basin and climatic characteristics. The relationships developed for this study resulted in lower mean standard errors of prediction than previous regression analyses.
2.10 Scientific Investigations Report 2018-5046

The USGS SIR 2018-5046 included updated AEP peak discharges with AEPs of 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent (return intervals of 2, 2.33, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for 99 gaged sites in or near Montana, based on data through Water Year 2015 (Sando and McCarthy, 2018). Flood-frequency data typically were determined by fitting a log-Pearson Type III probability distribution using an Expected Moments Algorithm analysis and other methods described by England and others in Bulletin #17C (England et al., 2018). The AEP peak discharges for the SBC below Blacktail Creek at Butte, MT gage were updated as part of the report. Table 12 provides the SIR 2018-5046 peak discharge summary for the gage.

Table 12 SIR 2018-5046 Peak Discharge Summary

<table>
<thead>
<tr>
<th>USGS Station Number</th>
<th>USGS Station Name</th>
<th>Drainage Area (sq mi)</th>
<th>Years of Record</th>
<th>Peak Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>125</td>
<td>32</td>
<td>261 315 384 436 488 541 613</td>
</tr>
</tbody>
</table>

2.11 Additional Previous Studies

Additional related previous studies conducted along SBC within Silver Bow County involve water management, fisheries management, or sediment management:

- Hydraulic and Water Quality Modeling of Silver Bow Creek-Upper Clark River, A Superfund Site in Montana (Brown and Hosseinipour, 1987).
- EPA Record of Decision Butte Priority Soils Operable Unit, Silver Bow Creek/Butte Area NPL Site (EPA, 2006).
- EPA Superfund Record of Decision: Silver Bow/Butte Creek, Streamside Tailings O.U., MT (EPA, 1996).
- Prioritization of Areas in the Upper Clark Fork River Basin for Fishery Enhancement (Saffel et al., 2018).
- Silver Bow Creek Watershed Restoration Plan (Confluence Consulting, Inc. and DTM Consulting, Inc., 2005).
- Water Quality, Bed-Sediment, and Biological Data (October 1993 thought September 1994) and Statistical Summaries of Data for Stream in the Upper Clark Fork Basin, Montana (Lambing et al., 1995).
3 HYDROLOGIC ANALYSES AND RESULTS

The purpose of the hydrologic analyses conducted as part of this project was to develop peak flow discharge estimates for the 50-, 10-, 4-, 2-, 1-, and 0.2-percent AEP events at key flow change locations (such as at significant tributaries confluences, stream gages, and population centers) along the study reach. The analysis was organized into two sections:

1. USGS Stream Gage Analysis.
2. Ungaged Flow Node Analysis.

Throughout the study area, 7 locations (flow nodes) on SBC were identified as having significant changes in streamflow or being at a critical location. Of the 7 flow nodes on SBC, 1 is located at an active USGS stream gage site and 6 are located downstream of that stream gage (ungaged sites). The river stationing used in this report was based on the SBC study profile baseline delineated by Pioneer using the project Light Detection and Ranging (LiDAR) information (QSI, 2017). The SBC profile baseline begins at the Silver Bow and Deer Lodge County border and extends upstream to river mile 17.1 (approximately 250 feet upstream of the westbound I-90 bridge east of Butte).

3.1 USGS Stream Gage Analysis

There is 1 USGS stream gage located in the SBC study reach and 3 additional USGS gages located near the study boundary (both upstream and downstream). The USGS gaging station 12323250 SBC below Blacktail Creek at Butte, MT is in the study reach located at river mile 17.0. The USGS gaging station 12323600 SBC at Opportunity, MT is located approximately 6.8 miles downstream of the study reach and was used in the analysis. Two other USGS gages are located upstream of the study boundary: USGS gaging station 12323240 Blacktail Creek at Butte, MT and 12323170 SBC above Blacktail Creek at Butte, MT.

The oldest records date back to 1984 at USGS gaging station 12323250 SBC below Blacktail Creek at Butte, MT and 12323170 SBC above Blacktail Creek at Butte, MT. The USGS gaging station 12323170 SBC above Blacktail Creek at Butte, MT has not been active since 1994. Currently, 3 of the 4 USGS gaging stations in or near the study reach are being maintained. Figure 1 on page 2 shows the study reach and the USGS gaging station locations along and near the study reach. The SBC below Blacktail Creek at Butte, MT gage has the longest congruent period of record extending from 1984 to 2017 (34 years). Table 13 summarizes the USGS stream gages considered in this analysis (active and inactive) along SBC. The FEMA guidance document (FEMA, 2017) indicates that gage station records equal or exceeding 10 years in length are applicable to all types of studies.

As discussed previously, the AEP peak discharges were updated for 725 gaged sites in or near Montana, based on data through Water Year 2011 (Sando et al., 2015a). Flood-frequency data were determined using methods described by the IACWD Bulletin #17B (IACWD, 1982). The
study was part of a larger study to develop an online StreamStats application for Montana. All 4 USGS gages in or near the study reach were included in this analysis.

In 2018, the USGS adopted Bulletin 17C guidelines to provide flood frequency estimates for stream gages (England et al., 2018). Pioneer performed systematic flood frequency analysis for all 4 gages in or nearby the Silver Bow study reach using Bulletin 17C methods. The calculations were conducted using the USGS PeakFQ flood frequency analysis software (version 7.1). Calculations are provided in Appendix A. Figure 6 plots the systematic flood frequency results as a function of drainage area and indicates peak discharges increase with increasing drainage area, as typically expected. The Blacktail Creek at Butte, MT gage is not on SBC, but it is a major tributary that with Upper Silver Bow Creek forms SBC. Table 14 tabulates the flood frequency estimate results.

Table 13 Silver Bow Creek USGS Gage Summary

<table>
<thead>
<tr>
<th>Station number</th>
<th>Station name</th>
<th>Drainage(^1) Area (sq mi)</th>
<th>Period of Systematic Record(^2)</th>
<th>Number of Annual Peaks(^2)</th>
<th>River Station (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>343.0</td>
<td>1989-2017</td>
<td>29</td>
<td>N/A</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek Butte, MT</td>
<td>124.8</td>
<td>1984–2017</td>
<td>34</td>
<td>17.0</td>
</tr>
<tr>
<td>12323240</td>
<td>Blacktail Creek at Butte, MT</td>
<td>90.9</td>
<td>1989–2017</td>
<td>29</td>
<td>N/A</td>
</tr>
<tr>
<td>12323170*</td>
<td>SBC above Blacktail Creek at Butte MT</td>
<td>21.7</td>
<td>1984–1994</td>
<td>11</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1. Source: National Watershed Information System (NWIS)
2. Data from USGS flood frequency NWIS, Web Interface
* Denotes inactive gage location

Figure 6 USGS Flood Frequency Estimates Systematic Record 1984 through 2017

Table 14 Gage Flood Frequency Estimates Using Systematic Record

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Station name</th>
<th>Analysis Period of Record</th>
<th>Peak discharge, (cfs), for indicated exceedance probability (%)</th>
<th>66.67</th>
<th>50</th>
<th>20</th>
<th>10</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>0.5</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Peak discharge (cfs), for indicated return interval (years)</td>
<td>1.5</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>12323170</td>
<td>SBC above Blacktail Creek at Butte, MT</td>
<td>1984-1994</td>
<td></td>
<td>3</td>
<td>4</td>
<td>13</td>
<td>24</td>
<td>45</td>
<td>70</td>
<td>104</td>
<td>150</td>
<td>236</td>
</tr>
<tr>
<td>12323240</td>
<td>Blacktail Creek at Butte, MT</td>
<td>1989-2017</td>
<td></td>
<td>96</td>
<td>120</td>
<td>180</td>
<td>222</td>
<td>275</td>
<td>314</td>
<td>353</td>
<td>393</td>
<td>447</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>1984-2017</td>
<td></td>
<td>147</td>
<td>177</td>
<td>255</td>
<td>308</td>
<td>377</td>
<td>430</td>
<td>483</td>
<td>538</td>
<td>613</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>1989-2017</td>
<td></td>
<td>209</td>
<td>274</td>
<td>473</td>
<td>635</td>
<td>873</td>
<td>1,077</td>
<td>1,303</td>
<td>1,553</td>
<td>1,928</td>
</tr>
</tbody>
</table>

cfs: cubic feet per second. SBC: Silver Bow Creek.
To address the non-congruent periods of record, the Maintenance of Variance Extension (MOVE) per Bulletin 17C (England et al., 2018) was considered to extend the historical gage records. The MOVE method correlates streamflow at a short-term gaging station with a longer-term index gaging station using a base 10 logarithmic transformation. The MOVE method can be used for record extension when a linear relationship exists between the logarithms of the same-year peak discharges at the target station and a nearby index station. A base period of 1984-2017 was selected for the record extension. Regulation occurs in a basin when flood flows are altered by reservoir operations or other water resource control structures (such as diversion dams). In this flood frequency analysis, gages were defined as regulated when greater than 20% of the basin lies upstream from reservoirs. The USGS determined that the regulation on SBC was not significant enough to affect peak flows (Sando et al., 2015c). A minimum 10 years of congruent records is required for the MOVE (England et al., 2018).

Generally, a correlation coefficient of 0.80 is considered a minimum linear relationship for the MOVE (England et al., 2018) applicability. The correlation coefficient for USGS gaging station 12323600 Silver Bow Creek at Opportunity, MT and USGS gaging station 12323250 SBC below Blacktail Creek at Butte, MT for the 29 congruent records was 0.49. This correlation coefficient indicates a weak linear relationship between the logarithms of the same-year peak discharges. Due to the proximity between USGS gaging station 12323250 SBC below Blacktail Creek at Butte, MT and USGS gaging station 12323240 Blacktail Creek at Butte, MT, the correlation coefficient was analyzed between USGS gaging station 12323600 SBC at Opportunity, MT and USGS gaging station 12323240 Blacktail Creek at Butte, MT. The corresponding coefficient was 0.62, still well below the threshold. It was determined the MOVE method was not applicable for this reach using the current peak flow data.

USGS gaging station 12323600 SBC at Opportunity, MT and USGS gaging station 12323250 SBC below Blacktail Creek at Butte, MT have 29 years of congruent records. Due to its limited period of record and distance from the project reach, USGS gaging station 12323170 SBC above Blacktail Creek at Butte, MT was not used. While the USGS gaging station 12323240 Blacktail Creek at Butte, MT is relatively close to USGS gaging station 12323250 SBC below Blacktail Creek at Butte, MT, it does not account for flow from Upper Silver Bow Creek; for these reasons the Blacktail Creek at Butte, MT gage was not used.

Using a congruent record data set minimizes the potential error associated with non-congruent periods of record. Consequently, flood flow frequency estimates using the 1989-2017 congruent record data set were selected to represent the annual chance flood potential at SBC gaged locations.

Table 15 summarizes SBC gage analysis flood frequency estimates using the congruent record. Figure 7 plots the congruent record analysis results.

Table 16 compares flood frequency estimates between the 2011 SIR 2015-5019-C analysis (Sando et al., 2015a) and this study’s 2017 systematic record analysis. Figure 8 compares
selected recurrence intervals from Table 16 for the two SBC gages used in the study. The 1989-2017 data record flood frequency flows are generally lower than the 1989-2011 estimated flows.

The SIR 2015-5019-C (Sando et al., 2015a) flood frequency estimates are a systematic analysis based on the period of record through water year 2011 using methods described in Bulletin #17B (IACWD, 1982). The 2017 flood frequency analysis is based on the systematic analysis through water year 2017 using methods described in Bulletin #17C (England et al., 2018); therefore, differences between the 2011 and 2017 peak flow estimates can be attributed to the different period of records used in the analysis and the different calculation methods used.

Table 15 Gage Flood Frequency Estimates Using Congruent Record

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Station name</th>
<th>Analysis Period of Record</th>
<th>Peak discharge, (cfs), for indicated exceedance probability (%)</th>
<th>Peak discharge (cfs), for indicated return interval (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>66.67</td>
<td>50</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>1989-2017</td>
<td>139</td>
<td>168</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>1989-2017</td>
<td>209</td>
<td>274</td>
</tr>
</tbody>
</table>

cfs: cubic feet per second. SBC: Silver Bow Creek.
Figure 7 USGS Flood Frequency Estimates
Congruent Record (1989-2017) vs Systematic Record
Table 16 USGS Flood Frequency Estimate Comparison 2011 and 2017

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Station Name</th>
<th>Peak Discharge, for Return Interval (years) (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, Montana</td>
<td>261</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, Montana</td>
<td>532</td>
</tr>
</tbody>
</table>

cfs: cubic feet per second. SBC: Silver Bow Creek.
3.1.1 1% + Peak Flow Estimates

The 1%+ percent AEP event was calculated to provide a confidence range that the 1% flood frequency peak flow estimates are likely to fall within. PeakFQ calculates a confidence interval for each gage analysis. Defining a 68% confidence interval (plus or minus +/- one standard deviation) results in the upper 84% confidence limit (+1 standard deviation). This upper 84% confidence limit was used to determine the 1% flood frequency peak flow estimates. The SBC 1%+ flood frequency peak flow estimates are based on the congruent record 1% estimates presented in Table 17 and graphically shown in Figure 9.
Table 17 USGS 1%+ Flood Frequency Estimates 2017

<table>
<thead>
<tr>
<th>Station Number</th>
<th>Station Name</th>
<th>1% + AEP Peak discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>595</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>1,871</td>
</tr>
</tbody>
</table>

cfs: cubic feet per second. AEP: annual exceedance probability. SBC: Silver Bow Creek.

Figure 9 USGS 1%+ Flood Frequency Estimates 1989-2017

![Graph showing 1%+ and 100-Yr flood frequency estimates over time.]

3.2 Flow Change Node Locations

Future flood studies will use hydraulic models that are composed of geometric data and streamflow data. To accurately model SBC, the locations of major tributary confluences and other flow change locations must be identified. The results of this hydrologic analysis will be used as the streamflow data input at the tributary confluences within the hydraulic model. A
detailed review of the study area was performed to identify all potential flow change locations (flow nodes) within SBC. At each flow node, a drainage basin area was delineated, and streamflow values were calculated for the various recurrence interval floods. Generally, the hydraulic models simulate flood events using steady-state conditions and, therefore, the peak flow rate calculated at a flow node is projected to the next upstream flow node. This method was followed for the hydrologic analysis calculations. Flow nodes were assigned immediately upstream of major tributaries; this method of locating the flow nodes was employed so that the additional flow resulting from the tributary confluence was accurately reflected to the reach downstream of the confluence.

To identify significant flow change locations (flow nodes), Hydrologic Unit Code (HUC) 12-digit watershed boundaries were used to initially locate the flow nodes. The HUC 12-digit watershed boundaries represent the smallest USGS-delineated watershed areas available in geographic information system (GIS) format. Using ArcGIS (an Esri GIS mapping software), flow nodes were located just upstream of the HUC 12 boundary intersection with SBC.

This study used the nearest Geographic Naming Information System (GNIS) hydrographic feature name for the ungaged flow node names. In some cases, these features (typically tributary streams) flow into SBC just downstream of the flow node.

To avoid excessive flow changes between HUC 12 boundary nodes, additional flow nodes were located immediately downstream of towns, at the beginning of study reaches, at county borders, or where intermediate tributaries within the HUC 12 boundaries intersected the study reach. One flow node was added downstream of Rocker, Montana. These town nodes and intermediate nodes are identified in Table 18.

A total of 8 flow nodes were identified throughout the study reach, including 2 gaged locations and 6 ungaged locations. Figure 10 shows the USGS gaging stations analyzed and the correlating StreamStats-generated watershed areas within the study area. Figure 11 maps the flow node locations and corresponding watershed areas from Table 18.
<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>County</th>
<th>River Station(^1) (miles)</th>
<th>StreamStats Calculated Basin Area(^2) (sq mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>Silver Bow</td>
<td>NA</td>
<td>342.6</td>
</tr>
<tr>
<td>100</td>
<td>Silver Bow County Boundary</td>
<td>Silver Bow</td>
<td>0.0</td>
<td>335.2</td>
</tr>
<tr>
<td>200</td>
<td>German Gulch</td>
<td>Silver Bow</td>
<td>2.3</td>
<td>288.8</td>
</tr>
<tr>
<td>300</td>
<td>McCleery Gulch</td>
<td>Silver Bow</td>
<td>6.8</td>
<td>274.2</td>
</tr>
<tr>
<td>400</td>
<td>Browns Gulch</td>
<td>Silver Bow</td>
<td>8.6</td>
<td>188.2</td>
</tr>
<tr>
<td>500</td>
<td>Sand Creek</td>
<td>Silver Bow</td>
<td>11.6</td>
<td>139.1</td>
</tr>
<tr>
<td>600</td>
<td>Rocker, MT</td>
<td>Silver Bow</td>
<td>14.1</td>
<td>135.0</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek Butte, MT</td>
<td>Silver Bow</td>
<td>17.0</td>
<td>124.7</td>
</tr>
</tbody>
</table>

1. River miles start at the downstream extent of each study reach (mi: miles)
2. Source: USGS StreamStats
FIGURE 10
SILVER BOW CREEK
USGS WATERSHEDS

DISPLAYED AS:
PROJECTION/ZONE: MONTANA STATE PLANE
RS 3, ZONE 3
DATUM: NAD 1983
UNITS: INT'L FEET
SOURCE: PIONEER, MSL, USGS

LEGEND
- INACTIVE USGS GAGE
- ACTIVE USGS GAGE
- SILVER BOW CREEK PROFILE BASELINE
- USGS BASINS
- NHD HYDROGRAPHY
- MONTANA COUNTY BOUNDARIES
- HUC 12 BOUNDARIES
- NHS INTERSTATE
- NHS NON-INTERSTATE
- PRIMARY
- SECONDARY

Preliminary
3.3 Flood Frequency Estimates at Ungaged Sites

To calculate peak flood discharge estimates at the ungaged flow nodes, Pioneer considered methods described in USGS SIR 2015-5109-F (Sando et al., 2015b). These methods included estimating flood frequency using regional flood-frequency relations (regression analysis) and estimating flood frequency on gaged streams by translating gaged data to ungaged locations (drainage-area ratio adjustment or logarithmic interpolation between two gaged sites).

Two USGS gaging stations (SBC below Blacktail Creek at Butte, MT and SBC at Opportunity, MT) were used for the SBC study reach. All the ungaged SBC flow nodes are located at or between these two gaging stations, therefore the two-site logarithmic interpolation method was used to estimate peak flows at the SBC ungaged flow nodes.

3.3.1 Regional Regression Equation Method

The SIR 2015-5019-F report provides guidance on conditions where regional regression equations might not yield reliable results. These limiting guidelines include the following:

1. A site where the basin characteristics are outside the range of values used to develop the regression equations.
2. A site that is affected by regulation or urbanization.

Ungaged flow nodes located on SBC are not regulated and are within the range of values used to develop the West Region regression equations. The regression equations, presented in SIR 2015-5019-F (Sando et al., 2015b), use a drainage area (A), percentage of basin with forest land cover (F), and mean annual precipitation (P) as shown below in the following set of equations:

\[
\begin{align*}
Q_{50} &= 0.131A^{0.920}P^{2.24}(F + 1)^{-0.845} \\
Q_{10} &= 2.44A^{0.853}P^{1.71}(F + 1)^{-0.875} \\
Q_{4} &= 6.61A^{0.831}P^{1.53}(F + 1)^{-0.890} \\
Q_{2} &= 12.2A^{0.818}P^{1.42}(F + 1)^{-0.896} \\
Q_{1} &= 21.5A^{0.806}P^{1.32}(F + 1)^{-0.904} \\
Q_{0.2} &= 63.5A^{0.783}P^{1.12}(F + 1)^{-0.915}
\end{align*}
\]

where

\(Q_x\) is the X AEP peak flow magnitude, in cfs.
A is the contributing drainage area, in square miles.
F is the percent of basin with forest land cover.
P is the mean annual precipitation in inches.

The peak flow regional regression estimates for the 8 flow nodes were calculated using the USGS StreamStats software. The 1%+ (plus) AEP event was calculated using FEMA guidance methodologies (FEMA, 2016a) for all the flow nodes to provide a confidence limit of plus 1.
standard error that the 1% flood frequency peak flow estimates were likely to fall below. For the regional regression estimates, the average standard error of prediction or average standard error of estimate percentage (SEP, in percent) from SIR 2015-5019-F (Sando et al., 2015b) was used to define the equation’s statistical confidence upper limit of plus one standard error, (FEMA, 2016a). The resulting upper limit of plus one standard error was used to determine the 1%+ (plus) flood frequency peak flow estimates. Appendix B: Logarithmic Interpolation, Regional Regression and Weighted Calculations provides the 1%+ (plus) regional regression flood frequency calculations for the study flow nodes. Appendix C: Digital Data and Calculation Files contains the calculation files.

The West Hydrologic Region regression equation input variables are shown in Table 19. Regional regression flood frequency peak flow estimates are listed in Table 20. Figure 12 plots the calculated peak discharges and correlating drainage areas. Results indicate increasing flow magnitude with increasing drainage area.
Table 19 Regional Regression Variables

<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>Study Reach River Station (miles)</th>
<th>Basin Area (sq mi)</th>
<th>F (%)</th>
<th>P (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>17.0</td>
<td>124.7</td>
<td>50.8</td>
<td>16.7</td>
</tr>
<tr>
<td>600</td>
<td>Rocker, MT</td>
<td>14.1</td>
<td>135.0</td>
<td>49.4</td>
<td>16.6</td>
</tr>
<tr>
<td>500</td>
<td>Sand Creek</td>
<td>11.6</td>
<td>139.1</td>
<td>45.6</td>
<td>16.3</td>
</tr>
<tr>
<td>400</td>
<td>Browns Gulch</td>
<td>8.6</td>
<td>188.2</td>
<td>38.8</td>
<td>15.7</td>
</tr>
<tr>
<td>300</td>
<td>Mc Cleery Gulch</td>
<td>6.8</td>
<td>274.2</td>
<td>45.1</td>
<td>15.7</td>
</tr>
<tr>
<td>200</td>
<td>German Gulch</td>
<td>2.3</td>
<td>288.8</td>
<td>44.4</td>
<td>15.7</td>
</tr>
<tr>
<td>100</td>
<td>Silver Bow County Boundary</td>
<td>0</td>
<td>335.2</td>
<td>48.9</td>
<td>16.5</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>NA</td>
<td>342.6</td>
<td>48.8</td>
<td>16.4</td>
</tr>
</tbody>
</table>

F (%): percentage of basin with forest land cover. P(in): mean annual precipitation in inches.

Table 20 Regional Regression Flood Frequency Peak Flow Estimates

<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>West Region Regression Estimated Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>West Region Regression Estimated Discharge (cfs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% Annual Chance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-year</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>218</td>
</tr>
<tr>
<td>600</td>
<td>Rocker, MT</td>
<td>238</td>
</tr>
<tr>
<td>500</td>
<td>Sand Creek</td>
<td>247</td>
</tr>
<tr>
<td>400</td>
<td>Browns Gulch</td>
<td>343</td>
</tr>
<tr>
<td>300</td>
<td>Mc Cleery Gulch</td>
<td>432</td>
</tr>
<tr>
<td>200</td>
<td>German Gulch</td>
<td>454</td>
</tr>
<tr>
<td>100</td>
<td>Silver Bow County Boundary</td>
<td>538</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>547</td>
</tr>
</tbody>
</table>

3.3.2 Weighting Gage Estimates with Regional Regression Equations Method

Flood frequency gage-based estimates can be affected by the climatic conditions during the time period the peak-flow data were collected, influencing how the peak-flow frequency results represent long-term hydrologic conditions (Sando et al., 2015-D). Weighting the gage analysis peak flow estimates with the regional regression peak flow estimates adjusts the gage site frequency analysis to account for climatic conditions outside the gaged site period of record (Sando et al., 2015c). The USGS report SIR 2015-5019-D (Sando et al., 2015c) tabulates gage analysis peak flow estimates, regional regression peak flow estimates, and weighted gage peak flow estimates. Table 21 summarizes the SIR 2015-5019-D comparison for the gaged sites used in this study. The SIR 2015-5019-D uses 17b bulletin methods and data through water year 2011.
To account for gage data records through water year 2017 and Bulletin 17c gage frequency analysis methods, Pioneer performed an additional weighted with regional regression equations analysis. The weighting method is described in Bulletin 17c, Appendix 9 (England et al., 2018), and is shown below:

\[X_{\text{weighted}} = \frac{X_{\text{site}} \cdot V_{\text{reg}} + X_{\text{reg}} \cdot V_{\text{site}}}{V_{\text{site}} + V_{\text{reg}}} \]

Where:
- \(X_{\text{weighted}} \) = Weighted peak flow transformed using base-10 logarithm (cfs).
- \(X_{\text{site}} \) = Gage peak flow transformed using base-10 logarithm (cfs).
- \(X_{\text{reg}} \) = Regression peak flow transformed using base-10 logarithm (cfs).
- \(V_{\text{site}} \) = Gage peak flow Variance (per PeakFQ).
- \(V_{\text{reg}} \) = Regression peak flow Variance (per SIR 2015-5019-D, Table 1-4).

Table 22 shows variance values used to weight the gage analysis peak flow estimates. Peak flows were calculated at the 2 gage locations using congruent periods of record through water year 2017 using Bulletin 17c methods and then weighted using the methodology described above.

Table 23 summarizes the 1989-2017 data record and at-site, regression and weighted results using the Bulletin 17c (England et al., 2018) and regional regression peak flow estimates. The data from Table 23 are plotted on Figure 13 and Figure 14 along with a confidence interval equal to 1 standard error of the regression model for the 2 gages used in this analysis. The average standard error of prediction or average standard error of estimate percentage (SEP in percent) from SIR 2015-5019 F (Sando et al., 2015b) was used to define the regional regression statistical confidence interval of plus/minus one standard error (FEMA 2016).

The weighted gage AEP peak flows estimates are less than the regional regression estimates but are within 1 standard error of the regional regression peak flow estimates.
Table 21 Study Reach Peak Flow Estimates (Systematic Data through 2011)

<table>
<thead>
<tr>
<th>Station Identification number</th>
<th>Station Name</th>
<th>Drainage Area sq mi</th>
<th>Flow Records (year)</th>
<th>Period of record (water year)</th>
<th>Hydrologic region</th>
<th>Type of peak-flow frequency estimate(^1)</th>
<th>Annual peak flow, in cfs, for indicated annual exceedance probability, in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66.7</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, Montana</td>
<td>125</td>
<td>28</td>
<td>1984–2011</td>
<td>W</td>
<td>at-site regression</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weighted</td>
<td>156</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, Montana</td>
<td>343</td>
<td>23</td>
<td>1989–2011</td>
<td>W</td>
<td>at-site regression</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weighted</td>
<td>232</td>
</tr>
</tbody>
</table>

1. Source: SIR 2015-5019-D (Sando et al., 2015c).

Table 22 Variance Values for Regional Regression Weighted Analysis

<table>
<thead>
<tr>
<th>Peak Flow Analysis Method</th>
<th>Regional Regression Weighted Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66.7% Annual Chance</td>
</tr>
<tr>
<td></td>
<td>1.5-year</td>
</tr>
<tr>
<td>Gage Analysis(^1) 12323250</td>
<td>0.0012</td>
</tr>
<tr>
<td>Gage Analysis(^1) 12323600</td>
<td>0.0029</td>
</tr>
<tr>
<td>Regional Regression(^2)</td>
<td>0.054</td>
</tr>
</tbody>
</table>

1. Source: PeakFQ.
2. Source: StreamStats, SIR2015-5019D (Sando et al., 2015c, Table 1-4).
Table 23 Study Reach Peak Flow Estimates (Congruent Data 1989 - 2017)

<table>
<thead>
<tr>
<th>Station Identification number</th>
<th>Station Name</th>
<th>Drainage Area sq mi</th>
<th>Flow Records (year)</th>
<th>Period of record (water year)</th>
<th>Hydrologic region</th>
<th>Type of peak-flow frequency estimate<sup>1</sup></th>
<th>Annual peak flow, in cfs, for indicated annual exceedance probability, in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, Montana</td>
<td>125</td>
<td>29</td>
<td>1989–2017</td>
<td>W</td>
<td>at-site</td>
<td>139 116 183 247 304 380 440 503 568 661</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>regression</td>
<td>156 218 250 410 586 810 1,010 1,220 1,460 1,760</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weighted</td>
<td>139 118 184 251 313 400 473 554 644 774</td>
<td></td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, Montana</td>
<td>343</td>
<td>29</td>
<td>1989–2017</td>
<td>W</td>
<td>at-site</td>
<td>209 274 307 473 635 873 1,077 1,303 1,553 1,928</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>regression</td>
<td>400 547 621 991 1,390 1,890 2,320 2,790 3,300 3,940</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weighted</td>
<td>216 285 320 501 691 988 1,257 1,572 1,929 2,452</td>
<td></td>
</tr>
</tbody>
</table>

1. Bulletin 17C gage analysis
 cfs: cubic feet per second. SBC: Silver Bow Creek.
Figure 13 1% AEP Peak Flow Regional Regression Results for Silver Bow Creek below Blacktail Creek at Butte, Montana
Figure 14 1% AEP Peak Flow Regional Regression Results for Silver Bow Creek at Opportunity, Montana

![Graph showing peak flow versus recurrence interval for Silver Bow Creek at Opportunity, Montana. The graph includes data points and regression lines for at-site and regional regression equations, along with upper and lower 1 standard error (SEP) and weighted regression lines.](image-url)
3.3.3 Two-Station Logarithmic Interpolation Method

Pioneer used the log interpolation method presented in SIR 2015-5019-F (Sando et al., 2015b) for analysis on ungaged sites between two gaged sites. In this method, the logarithm of the flood-frequency discharge estimates at the ungaged site is linearly interpolated based on discharge estimates and drainage basin areas of the upstream and downstream gaged sites. This method is presented in the equation below from SIR 2015-5019-F:

\[
\log Q_{AEP,U} = \log Q_{AEP,G1} + \frac{\log Q_{AEP,G2} - \log Q_{AEP,G1}}{\log D_{G2} - \log D_{G1}} \left(\log D_U - \log D_{G1} \right)
\]

where

- \(\log\) is the base 10 logarithm.
- \(Q_{AEP,U}\) is the AEP-percent peak flow at the ungaged site, in cfs.
- \(Q_{AEP,G1}\) is the AEP-percent peak flow at the upstream gaged site, in cfs.
- \(Q_{AEP,G2}\) is the AEP-percent peak flow at the downstream gaged site, in cfs.
- \(D_{G2}\) is the drainage area at the downstream gaged site, in square miles.
- \(D_{G1}\) is the drainage area at the upstream gaged site, in square miles.
- \(D_U\) is the drainage area at the ungaged site, in square miles.

Table 24 shows the calculation results using the regional regression weighted gage estimates. Figure 15 plots the relationship between the calculated discharge estimates and correlating drainage area. Results indicate estimated flows at the ungaged flow nodes increase with increasing drainage area.
Table 24 Two-Station Log Interpolation Flow Node Peak Flow Estimates

<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>Log Interpolation of RRE Weighted Gaged Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Discharge (cfs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% Annual Chance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-year</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>169</td>
</tr>
<tr>
<td>600</td>
<td>Rocker, MT</td>
<td>176</td>
</tr>
<tr>
<td>500</td>
<td>Sand Creek</td>
<td>179</td>
</tr>
<tr>
<td>400</td>
<td>Browns Gulch</td>
<td>209</td>
</tr>
<tr>
<td>300</td>
<td>McCleery Gulch</td>
<td>254</td>
</tr>
<tr>
<td>200</td>
<td>German Gulch</td>
<td>261</td>
</tr>
<tr>
<td>100</td>
<td>Silver Bow County Boundary</td>
<td>281</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>285</td>
</tr>
</tbody>
</table>

Figure 15 Silver Bow Creek Log Interpolation Gage Analysis Results

![Graph showing Silver Bow Creek Log Interpolation Gage Analysis Results with various lines representing different discharge rates and drainage areas. The graph includes data points for 2-yr, 10-yr, 25-yr, 50-yr, 100-yr, 1%+, and 500-yr events.]
4 DISCUSSION

Pioneer conducted a peak discharge frequency analysis for the SBC study reach, which extends 17 miles upstream from the Deer Lodge/Silver Bow County Boundary. Information gathered from this analysis will be used to support the Butte-Silver Bow hydraulic analyses and floodplain mapping studies.

Previous flood studies on SBC are numerous. The most relevant earlier flood study was the SIR 2015-5019-C (Sando et al., 2015a). The Channel Stability Analysis and Conceptual Design Report SST OU Subarea 3 published in 2007 (Tetra Tech and AGI, 2007) was also an important study that included flood frequency analysis for the study reach as well as the design flows for the SST OU RA reconstructed channel and floodplain.

This hydrologic analysis developed flood frequency estimates for both gaged and ungaged sites. Peak flow estimates were calculated at 8 locations (flow nodes) within the watershed (2 gaged sites and 6 ungaged sites). The ungaged sites (flow nodes) were located at major tributaries, population centers, and at the end of study reaches.

Flood frequency estimates at the gaged sites were conducted using Bulletin #17C methodologies (England et al., 2018). Flood flow frequency estimates at ungaged flow nodes were conducted using regional regression methods and two-station logarithmic interpolation (Sando et al., 2015b). All the flow nodes were located at or within the 2 gaged sites, therefore the single station drainage area ratio method was not used in this study. The Peak flow 1%+ (plus) estimates were developed for all gaged and ungaged locations using standard FEMA methodologies.

Four USGS stream gaging stations exist within or near the study area. Two of these stream gaging stations, SBC at Opportunity, MT (12323600) and SBC below Blacktail Creek at Butte, MT (12323250), were used to estimate AEP peak flow values for the study area. The SBC below Blacktail Creek at Butte, MT gage is located at the upstream end of the study reach, and the SBC at Opportunity, MT gage is located 6.8 miles downstream of the study reach Butte-Silver Bow\Deer Lodge county boundary.

The 2 SBC stream gaging stations used in this study have non-congruent periods of record. Non-congruent periods of record can influence peak flow estimates between gaged sites within the drainage area and may introduce error to the peak flow frequency estimates. To eliminate the potential issues associated with non-congruent periods of record, flood frequency estimates were conducted using the congruent data set for 1989-2017 (29 years). The FEMA guidance document (FEMA, 2017) indicates that gage station records equal or exceeding 10 years in length are applicable to all types of studies. The gage period of record used in this study exceeds the FEMA minimum guidance by a factor of 2.9 and therefore is applicable to this flood study.
The SBC watershed in this study is considered unregulated. The basin parameters for the flow nodes evaluated in this study all fall within the range of basin and climatic characteristics used to develop the regional regression equations. Therefore, regional regression method peak flow estimates are applicable to this study.

The regional regression method estimates peak flows that are significantly greater than the weighted gage-based estimates. Regional regression peak flow estimates exceed the gage-based estimates used in the study by 220% at the SBC below Blacktail Creek at Butte, MT gage and 177% at the SBC at Opportunity, MT gage. The weighted gage-based estimates are within 1 standard error of the regional regression peak flow estimates.

Regional regression equations are based on comparisons of peak flows and basin characteristics for a given region (Sando et al., 2015b). As a result, regional regression equations are beneficial for estimating peak flows when gage data does not exist, or the period of record is too short to represent the historic climate. A minimum 10 years of gage data is recommended to perform gage peak flow analysis; the gages used in this analysis surpass that minimum.

Gage-based peak flow frequency estimates can be influenced by the climatic conditions that existed during the gage data collection period (gage period of record). To evaluate the climatic conditions of the gage period of record relative to longer term climatic conditions, Pioneer analyzed the study area historic precipitation.

Figure 16 and Figure 17 show the historic annual precipitation for Butte and Anaconda, Montana, respectively. The average precipitation during the study’s gage period of record (1989-2017) was within 3% of the historical average. Therefore, the gage analysis performed in this study is considered representative of historical precipitation conditions.

The gage-based AEP estimates meet all the standard hydrologic flood frequency practice requirements including the following:

- A congruent period of record that exceeds the minimum FEMA guidance (by a factor 2.9).
- Gage period of record average precipitation values that are consistent with long-term basin average precipitation values.
- Estimates are weighted with regional regression peak flow estimates to account for climatic conditions outside of the study’s gage period of record.
- Estimates fall within 1 standard error of the regional regression method peak flow estimates.

The gage data and the gage-based flood frequency estimating methods meet the hydrologic flood frequency standard practice criteria and guidance. Additionally, higher confidence is typically associated with flood frequency estimates that are based on measured stream flows, such as in the two-station logarithmic interpolation method. For these reasons, the regional regression method peak flow estimates were eliminated from further consideration.
It should be noted that hydrology developed for the SST OU RA designs used the regional regression methods to represent the 10% (10-year event) and lower AEP peak flows. At the time of the Subarea 3 Conceptual Design Report (Tetra Tech and AGI, 2007) the congruent period of record was 16 years (1989-2005). Due to the limited gage period of record only the 50% AEP flow (2-year event) was estimated using gage data. In 2018, the gage period of record for the same gages used in the Tetra Tech report were almost twice the period of record in 2007. Currently the 2 gages used in this study reach have 29 years of congruent flow records and therefore these 2018 gage-based AEP peak flow estimates are more accurate than the gage-based AEP estimates were in 2007.

Table 25 summarizes the recommended flood frequency discharge rates for the SBC study reach. Figure 18 shows the recommended 1% AEP discharge for each flow node location. The hydrologic analysis results provided in Table 25 represent the recommended discharges at each flow node location throughout the study reach. The methods used for hydrological analysis are industry accepted methods (Bulletin #17C [England et al., 2018], SIR 2015-5019-C [Sando et al., 2015a] and SIR 2015-5019-F [Sando et al., 2015b]) based on SBC basin characteristics. This hydrologic analysis conforms to FEMA standards for enhanced level studies, and the recommended flows of this analysis are deemed reliable and suitable for future floodplain studies and hydraulic analyses.
Figure 16 Butte Historical Annual Precipitation

Butte Historic Annual Precipitation

Historic avg. = 10.69

Gage avg. = 10.77
Figure 17 Anaconda Historical Annual Precipitation

Historic avg. = 14.31
Gage avg. = 14.69
<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>AEP Peak Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2-year</td>
</tr>
<tr>
<td>12323250</td>
<td>SBC below Blacktail Creek at Butte, MT</td>
<td>169</td>
</tr>
<tr>
<td>600</td>
<td>Rocker, MT</td>
<td>176</td>
</tr>
<tr>
<td>500</td>
<td>Sand Creek</td>
<td>179</td>
</tr>
<tr>
<td>400</td>
<td>Browns Gulch</td>
<td>209</td>
</tr>
<tr>
<td>300</td>
<td>McCleery Gulch</td>
<td>254</td>
</tr>
<tr>
<td>200</td>
<td>German Gulch</td>
<td>261</td>
</tr>
<tr>
<td>100</td>
<td>Silver Bow County Boundary</td>
<td>281</td>
</tr>
<tr>
<td>12323600</td>
<td>SBC at Opportunity, MT</td>
<td>285</td>
</tr>
</tbody>
</table>

FIGURE 18
RECOMMENDED 1-PERCENT ANNUAL DISCHARGE FOR EACH LOCATION

DISPLAYED AS:
PROJECTION/TONE: MONTANA STATE PLANE
SCALE: 1:24,000
DATE: 8/2/2018

LEGEND
INACTIVE USGS GAGES
FLOW NODE (PEAK FLOW)
SILVER BOW CREEK PROFILE BASELINE
FIRM PANEL
SECONDARY
HUC 12 BOUNDARIES
MONTANA COUNTY BOUNDARIES
NHD HYDROGRAPHY
FIRMS INTERSTATE
NHS NON-INTERSTATE

PAGE 49 OF 52
5 REFERENCES

Appendix A: USGS Gage Flood Frequency Analysis
Program PeakFq U. S. GEOLOGICAL SURVEY Seq.002.000
Version 7.1 Annual peak flow frequency analysis Run Date / Time 06/05/2018 14:57
3/14/2014

--- PROCESSING OPTIONS ---
Plot option = None
Basin char output = None
Print option = Yes
Debug print = No
Input peaks listing = Long
Input peaks format = WATSTORE peak file

Input files used:
peaks (ascii) - C:\Users\jjupka\Desktop\watstore\SilverBowCr\12323250\12323250.TXT
specifications - C:\Users\jjupka\Desktop\watstore\SilverBowCr\12323250\PKFQWPSF.TMP
Output file(s):
main - H:\DEQ\SSTOU NEW\2018\FEMA_PMR\HYDROLOGIC ASSESSMENT\DATA\PEAKFQ\12323250\12323250

Program PeakFq U. S. GEOLOGICAL SURVEY Seq.001.001
Version 7.1 Annual peak flow frequency analysis Run Date / Time 06/05/2018 14:57
3/14/2014

Station - 12323250 Silver Bow Cr bl Blacktail Cr at Butte MT

INPUT DATA SUMMARY
Number of peaks in record = 34
Peaks not used in analysis = 0
Systematic peaks in analysis = 34
Historic peaks in analysis = 0
Beginning Year = 1984
Ending Year = 2017
Historical Period Length = 34
Generalized skew = -0.091
Standard error = 0.550
Mean Square error = 0.303
Skew option = WEIGHTED
Gage base discharge = 0.0
User supplied high outlier threshold = --
User supplied PILF (LO) criterion = --
Plotting position parameter = 0.00
Type of analysis EMA
PILF (LO) Test Method MGBT
Perception Thresholds:
Begin End Low High Comment
1984 2017 0.0 INF DEFAULT
Interval Data = None Specified

******* NOTICE -- Preliminary machine computations. *******
******* User responsible for assessment and interpretation. *******
Kendall’s Tau Parameters

<table>
<thead>
<tr>
<th>SYSTEMATIC RECORD</th>
<th>TAU</th>
<th>P-VALUE</th>
<th>SLOPE</th>
<th>PEAKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.353</td>
<td>0.003</td>
<td>-3.700</td>
<td>34</td>
</tr>
</tbody>
</table>

Program PeakFq

U. S. GEOLOGICAL SURVEY

Version 7.1

Annual peak flow frequency analysis

Run Date / Time

3/14/2014

Station - 12323250 Silver Bow Cr bl Blacktail Cr at Butte MT

ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

LOGARITHMIC

<table>
<thead>
<tr>
<th>EMA W/O REG. INFO</th>
<th>MEAN</th>
<th>STANDARD DEVIATION</th>
<th>SKEW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.2469</td>
<td>0.1885</td>
<td>0.031</td>
</tr>
</tbody>
</table>

| EMA W/ REG. INFO | 2.2469 | 0.1885 | -0.010 |

EMA ESTIMATE OF MSE OF SKEW W/O REG. INFO (AT-SITE)

0.1504

EMA ESTIMATE OF MSE OF SKEW W/SYSTEMATIC ONLY (AT-SITE)

0.1504

ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

<table>
<thead>
<tr>
<th>ANNUAL EXCEEDANCE PROBABILITY</th>
<th>EMA W/ REG. INFO ESTIMATE</th>
<th>EMA W/O REG. INFO ESTIMATE</th>
<th>VARIANCE OF EST.</th>
<th>68% CONFIDENCE INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9950</td>
<td>57.5</td>
<td>58.4</td>
<td>0.0068</td>
<td>45.0 - 67.9</td>
</tr>
<tr>
<td>0.9900</td>
<td>64.1</td>
<td>64.9</td>
<td>0.0052</td>
<td>51.9 - 74.2</td>
</tr>
<tr>
<td>0.9500</td>
<td>86.4</td>
<td>86.8</td>
<td>0.0025</td>
<td>75.1 - 96.1</td>
</tr>
<tr>
<td>0.9000</td>
<td>101.2</td>
<td>101.4</td>
<td>0.0018</td>
<td>90.3 - 111.1</td>
</tr>
<tr>
<td>0.8000</td>
<td>122.5</td>
<td>122.4</td>
<td>0.0014</td>
<td>111.7 - 133.2</td>
</tr>
<tr>
<td>0.6667</td>
<td>146.5</td>
<td>146.2</td>
<td>0.0012</td>
<td>134.9 - 158.6</td>
</tr>
<tr>
<td>0.5000</td>
<td>176.7</td>
<td>176.2</td>
<td>0.0011</td>
<td>163.3 - 191.1</td>
</tr>
<tr>
<td>0.4292</td>
<td>190.9</td>
<td>190.4</td>
<td>0.0012</td>
<td>176.5 - 206.7</td>
</tr>
<tr>
<td>0.3000</td>
<td>254.5</td>
<td>254.3</td>
<td>0.0015</td>
<td>234.2 - 279.0</td>
</tr>
<tr>
<td>0.2000</td>
<td>307.8</td>
<td>308.4</td>
<td>0.0020</td>
<td>280.6 - 344.4</td>
</tr>
<tr>
<td>0.1000</td>
<td>377.0</td>
<td>379.3</td>
<td>0.0031</td>
<td>337.5 - 436.7</td>
</tr>
<tr>
<td>0.0400</td>
<td>429.6</td>
<td>433.7</td>
<td>0.0044</td>
<td>378.4 - 512.8</td>
</tr>
<tr>
<td>0.0100</td>
<td>483.2</td>
<td>489.5</td>
<td>0.0059</td>
<td>417.9 - 595.3</td>
</tr>
<tr>
<td>0.0050</td>
<td>538.0</td>
<td>546.9</td>
<td>0.0078</td>
<td>456.3 - 685.1</td>
</tr>
<tr>
<td>0.0020</td>
<td>612.7</td>
<td>625.9</td>
<td>0.0108</td>
<td>505.8 - 816.3</td>
</tr>
</tbody>
</table>
Station - 12323250 Silver Bow Cr bl Blacktail Cr at Butte MT

INPUT DATA LISTING

<table>
<thead>
<tr>
<th>WATER YEAR</th>
<th>PEAK VALUE</th>
<th>PEAKFQ CODES</th>
<th>LOW INTERVAL</th>
<th>HIGH INTERVAL</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>144.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>239.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>253.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>270.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>224.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>152.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>320.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>216.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>232.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>165.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>159.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>320.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>272.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>276.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>447.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>204.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>74.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>256.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>137.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>314.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>122.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>88.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>158.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>124.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>134.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>112.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>195.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>250.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>122.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>128.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>110.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>156.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation of peak discharge qualification codes

<table>
<thead>
<tr>
<th>PeakFQ CODE</th>
<th>NWIS CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3</td>
<td>Dam failure, non-recurrent flow anomaly</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>Discharge greater than stated value</td>
</tr>
<tr>
<td>X</td>
<td>3+8</td>
<td>Both of the above</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>Discharge less than stated value</td>
</tr>
<tr>
<td>K</td>
<td>6 OR C</td>
<td>Known effect of regulation or urbanization</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>Historic peak</td>
</tr>
</tbody>
</table>

- Minus-flagged discharge -- Not used in computation
- 8888.0 -- No discharge value given
- Minus-flagged water year -- Historic peak used in computation
<table>
<thead>
<tr>
<th>WATER YEAR</th>
<th>RANKED DISCHARGE</th>
<th>EMA ESTIMATE</th>
<th>INTERVALS LOW</th>
<th>INTERVALS HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>447.0</td>
<td>0.0286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>320.0</td>
<td>0.0857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>320.0</td>
<td>0.0571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>314.0</td>
<td>0.1143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>276.0</td>
<td>0.1429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>272.0</td>
<td>0.1714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>270.0</td>
<td>0.2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>256.0</td>
<td>0.2286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>253.0</td>
<td>0.2571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>250.0</td>
<td>0.2857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>239.0</td>
<td>0.3143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>232.0</td>
<td>0.3429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>224.0</td>
<td>0.3714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>216.0</td>
<td>0.4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>204.0</td>
<td>0.4286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>195.0</td>
<td>0.4571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>165.0</td>
<td>0.4857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>159.0</td>
<td>0.5143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>158.0</td>
<td>0.5429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>156.0</td>
<td>0.5714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>152.0</td>
<td>0.6000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>144.0</td>
<td>0.6286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>137.0</td>
<td>0.6571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>134.0</td>
<td>0.6857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>128.0</td>
<td>0.7143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>124.0</td>
<td>0.7429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>122.0</td>
<td>0.8000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>122.0</td>
<td>0.7714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>112.0</td>
<td>0.8286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>110.0</td>
<td>0.8571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>100.0</td>
<td>0.9143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>100.0</td>
<td>0.8857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>88.0</td>
<td>0.9429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>74.0</td>
<td>0.9714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year</td>
<td>PeakFQ</td>
<td>PeakFQ</td>
<td>PeakFQ</td>
<td>PeakFQ</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1984</td>
<td>144.0</td>
<td>144.0</td>
<td>144.0</td>
<td>144.0</td>
</tr>
<tr>
<td>1985</td>
<td>239.0</td>
<td>239.0</td>
<td>239.0</td>
<td>239.0</td>
</tr>
<tr>
<td>1986</td>
<td>239.0</td>
<td>239.0</td>
<td>239.0</td>
<td>239.0</td>
</tr>
<tr>
<td>1987</td>
<td>270.0</td>
<td>270.0</td>
<td>270.0</td>
<td>270.0</td>
</tr>
<tr>
<td>1988</td>
<td>224.0</td>
<td>224.0</td>
<td>224.0</td>
<td>224.0</td>
</tr>
<tr>
<td>1989</td>
<td>152.0</td>
<td>152.0</td>
<td>152.0</td>
<td>152.0</td>
</tr>
<tr>
<td>1990</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
</tr>
<tr>
<td>1991</td>
<td>216.0</td>
<td>216.0</td>
<td>216.0</td>
<td>216.0</td>
</tr>
<tr>
<td>1992</td>
<td>232.0</td>
<td>232.0</td>
<td>232.0</td>
<td>232.0</td>
</tr>
<tr>
<td>1993</td>
<td>165.0</td>
<td>165.0</td>
<td>165.0</td>
<td>165.0</td>
</tr>
<tr>
<td>1994</td>
<td>159.0</td>
<td>159.0</td>
<td>159.0</td>
<td>159.0</td>
</tr>
<tr>
<td>1995</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
</tr>
<tr>
<td>1996</td>
<td>272.0</td>
<td>272.0</td>
<td>272.0</td>
<td>272.0</td>
</tr>
<tr>
<td>1997</td>
<td>276.0</td>
<td>276.0</td>
<td>276.0</td>
<td>276.0</td>
</tr>
<tr>
<td>1998</td>
<td>447.0</td>
<td>447.0</td>
<td>447.0</td>
<td>447.0</td>
</tr>
<tr>
<td>1999</td>
<td>204.0</td>
<td>204.0</td>
<td>204.0</td>
<td>204.0</td>
</tr>
<tr>
<td>2000</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
</tr>
<tr>
<td>2001</td>
<td>256.0</td>
<td>256.0</td>
<td>256.0</td>
<td>256.0</td>
</tr>
<tr>
<td>2002</td>
<td>137.0</td>
<td>137.0</td>
<td>137.0</td>
<td>137.0</td>
</tr>
<tr>
<td>2003</td>
<td>314.0</td>
<td>314.0</td>
<td>314.0</td>
<td>314.0</td>
</tr>
<tr>
<td>2004</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
</tr>
<tr>
<td>2005</td>
<td>88.0</td>
<td>88.0</td>
<td>88.0</td>
<td>88.0</td>
</tr>
<tr>
<td>2006</td>
<td>158.0</td>
<td>158.0</td>
<td>158.0</td>
<td>158.0</td>
</tr>
<tr>
<td>2007</td>
<td>124.0</td>
<td>124.0</td>
<td>124.0</td>
<td>124.0</td>
</tr>
<tr>
<td>2008</td>
<td>134.0</td>
<td>134.0</td>
<td>134.0</td>
<td>134.0</td>
</tr>
<tr>
<td>2009</td>
<td>112.0</td>
<td>112.0</td>
<td>112.0</td>
<td>112.0</td>
</tr>
<tr>
<td>2010</td>
<td>195.0</td>
<td>195.0</td>
<td>195.0</td>
<td>195.0</td>
</tr>
<tr>
<td>2011</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
</tr>
<tr>
<td>2012</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
</tr>
<tr>
<td>2013</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2014</td>
<td>128.0</td>
<td>128.0</td>
<td>128.0</td>
<td>128.0</td>
</tr>
<tr>
<td>2015</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2016</td>
<td>110.0</td>
<td>110.0</td>
<td>110.0</td>
<td>110.0</td>
</tr>
<tr>
<td>2017</td>
<td>156.0</td>
<td>156.0</td>
<td>156.0</td>
<td>156.0</td>
</tr>
</tbody>
</table>

End PeakFQ analysis.
Stations processed : 1
Number of errors : 0
Stations skipped : 0
Station years : 34

Data records may have been ignored for the stations listed below.
(Card type must be Y, Z, N, H, J, 2, 3, 4, or *.)
(2, 4, and * records are ignored.)

For the station below, the following records were ignored:
FINISHED PROCESSING STATION: 12323250 USGS Silver Bow Cr bl Blacktail Cr

For the station below, the following records were ignored:
FINISHED PROCESSING STATION:
Program PeakFq U. S. GEOLOGICAL SURVEY Seq. 002. 000
Version 7.1 Annual peak flow frequency analysis Run Date / Time
3/14/2014 06/15/2018 09:37

--- PROCESSING OPTIONS ---
Plot option = None
Basin char output = None
Print option = Yes
Debug print = No
Input peaks listing = Long
Input peaks format = WATSTORE peak file

Input files used:
peaks (ascii) - C:\Users\jjupka\Desktop\watstore\SilverBowCr\12323250\12323250-29YRS.TXT
specifications - C:\Users\jjupka\Desktop\watstore\SilverBowCr\12323250\PKFQWPSF.TMP

Output file(s):
main - H:\DEQ\SSTOU NEW\2018\FEMA_PMR\HYDROLOGIC ASSESSMENT\DATA\PEAKFQ\12323250\29YEAR

--- INPUT DATA SUMMARY ---
Number of peaks in record = 29
Peaks not used in analysis = 0
Systematic peaks in analysis = 29
Historic peaks in analysis = 0
Beginning Year = 1989
Ending Year = 2017
Historical Period Length = 29
Generalized skew = -0.091
Standard error = 0.550
Mean Square error = 0.303
Skew option = WEIGHTED
Gage base discharge = 0.0
User supplied high outlier threshold = --
User supplied PILF (LO) criterion = --
Plotting position parameter = 0.00
Type of analysis = EMA
PILF (LO) Test Method = MGBT
Perception Thresholds:
Begin End Low High Comment
1989 2017 0.0 INF DEFAULT

Interval Data = None Specified

******** NOTICE -- Preliminary machine computations. ********
******** User responsible for assessment and interpretation. ********
Kendall's Tau Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Median</th>
<th>Tau</th>
<th>P-Value</th>
<th>Slope</th>
<th>Peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic Record</td>
<td>-0.372</td>
<td>0.005</td>
<td>-3.955</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

Logarithmic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skew</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMA W/O Reg. Info</td>
<td>2.2301</td>
<td>0.1955</td>
<td>0.245</td>
</tr>
<tr>
<td>EMA W/Reg. Info</td>
<td>2.2301</td>
<td>0.1955</td>
<td>0.114</td>
</tr>
</tbody>
</table>

EMA Estimate of MSE of Skew W/O Reg. Info (At-Site) 0.1925
EMA Estimate of MSE of Skew W/Systematic Only (At-Site) 0.1925

ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

<table>
<thead>
<tr>
<th>Exceedance Probability</th>
<th>Annual EMA W/ Reg. Info</th>
<th>EMA W/O Reg. Info</th>
<th>Variance of Est.</th>
<th>68% Confidence Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9950</td>
<td>55.9</td>
<td>59.1</td>
<td>0.0078</td>
<td>43.5</td>
</tr>
<tr>
<td>0.9900</td>
<td>61.9</td>
<td>64.7</td>
<td>0.0060</td>
<td>49.8</td>
</tr>
<tr>
<td>0.9500</td>
<td>82.2</td>
<td>83.7</td>
<td>0.0030</td>
<td>71.0</td>
</tr>
<tr>
<td>0.9000</td>
<td>95.9</td>
<td>96.6</td>
<td>0.0022</td>
<td>85.0</td>
</tr>
<tr>
<td>0.8000</td>
<td>116.0</td>
<td>115.8</td>
<td>0.0017</td>
<td>105.0</td>
</tr>
<tr>
<td>0.6667</td>
<td>139.0</td>
<td>137.9</td>
<td>0.0015</td>
<td>126.9</td>
</tr>
<tr>
<td>0.5000</td>
<td>168.4</td>
<td>166.8</td>
<td>0.0014</td>
<td>154.3</td>
</tr>
<tr>
<td>0.4292</td>
<td>182.5</td>
<td>180.8</td>
<td>0.0015</td>
<td>167.2</td>
</tr>
<tr>
<td>0.2000</td>
<td>247.4</td>
<td>246.6</td>
<td>0.0019</td>
<td>224.9</td>
</tr>
<tr>
<td>0.1000</td>
<td>304.0</td>
<td>305.7</td>
<td>0.0026</td>
<td>273.0</td>
</tr>
<tr>
<td>0.0400</td>
<td>380.2</td>
<td>387.5</td>
<td>0.0041</td>
<td>334.0</td>
</tr>
<tr>
<td>0.0200</td>
<td>440.1</td>
<td>453.8</td>
<td>0.0057</td>
<td>379.3</td>
</tr>
<tr>
<td>0.0100</td>
<td>502.7</td>
<td>524.6</td>
<td>0.0077</td>
<td>424.2</td>
</tr>
<tr>
<td>0.0050</td>
<td>568.4</td>
<td>600.5</td>
<td>0.0101</td>
<td>469.2</td>
</tr>
<tr>
<td>0.0020</td>
<td>660.7</td>
<td>709.8</td>
<td>0.0139</td>
<td>528.7</td>
</tr>
</tbody>
</table>
Station - 12323250 Silver Bow Cr bl Blacktail Cr at Butte MT

INPUT DATA LISTING

<table>
<thead>
<tr>
<th>YEAR</th>
<th>VALUE</th>
<th>CODES</th>
<th>LOW</th>
<th>HIGH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>152.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>320.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>216.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>232.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>165.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>159.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>320.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>272.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>276.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>447.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>204.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>74.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>256.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>137.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>314.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>122.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>88.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>158.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>124.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>134.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>112.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>195.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>250.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>128.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>110.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>156.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation of peak discharge qualification codes

<table>
<thead>
<tr>
<th>PeakFq CODE</th>
<th>NWIS CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3</td>
<td>Dam failure, non-recurrent flow anomaly</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>Discharge greater than stated value</td>
</tr>
<tr>
<td>X</td>
<td>3+8</td>
<td>Both of the above</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>Discharge less than stated value</td>
</tr>
<tr>
<td>K</td>
<td>6 OR C</td>
<td>Known effect of regulation or urbanization</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>Historic peak</td>
</tr>
</tbody>
</table>

- **Minus-flagged discharge** -- Not used in computation
- **-8888.0** -- No discharge value given
- **Minus-flagged water year** -- Historic peak used in computation
EMPIRICAL FREQUENCY CURVES -- HIRSCH-STEDINGER PLOTTING POSITIONS

<table>
<thead>
<tr>
<th>YEAR</th>
<th>DISCHARGE</th>
<th>RANKED</th>
<th>EMA INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>447.0</td>
<td>0.0333</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>320.0</td>
<td>0.1000</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>320.0</td>
<td>0.0867</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>314.0</td>
<td>0.1333</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>276.0</td>
<td>0.1667</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>272.0</td>
<td>0.2000</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>256.0</td>
<td>0.2333</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>250.0</td>
<td>0.2667</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>232.0</td>
<td>0.3000</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>216.0</td>
<td>0.3333</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>204.0</td>
<td>0.3667</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>195.0</td>
<td>0.4000</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>165.0</td>
<td>0.4333</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>159.0</td>
<td>0.4667</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>158.0</td>
<td>0.5000</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>156.0</td>
<td>0.5333</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>152.0</td>
<td>0.5667</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>152.0</td>
<td>0.5667</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>137.0</td>
<td>0.6000</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>134.0</td>
<td>0.6333</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>128.0</td>
<td>0.6667</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>124.0</td>
<td>0.7000</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>122.0</td>
<td>0.7333</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>122.0</td>
<td>0.7333</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>112.0</td>
<td>0.8000</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>110.0</td>
<td>0.8333</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>100.0</td>
<td>0.9000</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>100.0</td>
<td>0.8667</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>88.0</td>
<td>0.9333</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>74.0</td>
<td>0.9667</td>
<td></td>
</tr>
</tbody>
</table>

EMA REPRESENTATION OF DATA

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Q_LOWER</th>
<th>Q_UPPER</th>
<th>Q_LOWER</th>
<th>Q_UPPER</th>
<th>LOWER THRESHOLD</th>
<th>UPPER THRESHOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>152.0</td>
<td>152.0</td>
<td>152.0</td>
<td>152.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1990</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1991</td>
<td>216.0</td>
<td>216.0</td>
<td>216.0</td>
<td>216.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1992</td>
<td>232.0</td>
<td>232.0</td>
<td>232.0</td>
<td>232.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1993</td>
<td>165.0</td>
<td>165.0</td>
<td>165.0</td>
<td>165.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1994</td>
<td>159.0</td>
<td>159.0</td>
<td>159.0</td>
<td>159.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1995</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
<td>320.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1996</td>
<td>272.0</td>
<td>272.0</td>
<td>272.0</td>
<td>272.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1997</td>
<td>276.0</td>
<td>276.0</td>
<td>276.0</td>
<td>276.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>1998</td>
<td>447.0</td>
<td>447.0</td>
<td>447.0</td>
<td>447.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>Year</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
<td>Value6</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1999</td>
<td>204.0</td>
<td>204.0</td>
<td>204.0</td>
<td>204.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2000</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
<td>74.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2001</td>
<td>256.0</td>
<td>256.0</td>
<td>256.0</td>
<td>256.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2002</td>
<td>137.0</td>
<td>137.0</td>
<td>137.0</td>
<td>137.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2003</td>
<td>314.0</td>
<td>314.0</td>
<td>314.0</td>
<td>314.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2004</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2005</td>
<td>88.0</td>
<td>88.0</td>
<td>88.0</td>
<td>88.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2006</td>
<td>158.0</td>
<td>158.0</td>
<td>158.0</td>
<td>158.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2007</td>
<td>124.0</td>
<td>124.0</td>
<td>124.0</td>
<td>124.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2008</td>
<td>134.0</td>
<td>134.0</td>
<td>134.0</td>
<td>134.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2009</td>
<td>112.0</td>
<td>112.0</td>
<td>112.0</td>
<td>112.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2010</td>
<td>195.0</td>
<td>195.0</td>
<td>195.0</td>
<td>195.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2011</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
<td>250.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2012</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
<td>122.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2013</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2014</td>
<td>128.0</td>
<td>128.0</td>
<td>128.0</td>
<td>128.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2015</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2016</td>
<td>110.0</td>
<td>110.0</td>
<td>110.0</td>
<td>110.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
<tr>
<td>2017</td>
<td>156.0</td>
<td>156.0</td>
<td>156.0</td>
<td>156.0</td>
<td>0.0</td>
<td>INF</td>
</tr>
</tbody>
</table>

End PeakFQ analysis.
Stations processed: 1
Number of errors: 0
Stations skipped: 0
Station years: 29

Data records may have been ignored for the stations listed below.
(Card type must be Y, Z, N, H, I, 2, 3, 4, or *.)
(2, 4, and * records are ignored.)

For the station below, the following records were ignored:
FINISHED PROCESSING STATION: 12323250 USGS Silver Bow Cr bl Blacktail Cr

For the station below, the following records were ignored:
FINISHED PROCESSING STATION:
Program PeakFq U. S. GEOLOGICAL SURVEY Seq.002.000
Version 7.1 Annual peak flow frequency analysis Run Date / Time
3/14/2014 06/05/2018 14:59

--- PROCESSING OPTIONS ---
Plot option = None
Basin char output = None
Print option = Yes
Debug print = No
Input peaks listing = Long
Input peaks format = WATSTORE peak file

Input files used:
peaks (ascii) - C:\Users\jjupka\Desktop\watstore\SilverBowCr\12323600\12323600.TXT
specifications - C:\Users\jjupka\Desktop\watstore\SilverBowCr\12323600\PKFQWPSF.TMP
Output file(s):
main - H:\DEQ\SSTOU NEW, 2018\FEMA_PMR\HYDROLOGIC ASSESSMENT\DATA\PEAKFQ\12323600\123236

Program PeakFq U. S. GEOLOGICAL SURVEY Seq.001.001
Version 7.1 Annual peak flow frequency analysis Run Date / Time
3/14/2014 06/05/2018 14:59

Station - 12323600 Silver Bow Creek at Opportunity MT

INPUT DATA SUMMARY

Number of peaks in record = 29
Peaks not used in analysis = 0
Systematic peaks in analysis = 29
Historic peaks in analysis = 0
Beginning Year = 1989
Ending Year = 2017
Historical Period Length = 29
Generalized skew = -0.114
Standard error = 0.550
Mean Square error = 0.303
Skew option = WEIGHTED
Gage base discharge = 0.0
User supplied high outlier threshold = --
User supplied PILF (LO) criterion = --
Plotting position parameter = 0.00
Type of analysis = EMA
PILF (LO) Test Method = MGBT
Perception Thresholds:

<table>
<thead>
<tr>
<th>Begin</th>
<th>End</th>
<th>Low</th>
<th>High</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>2017</td>
<td>0.0</td>
<td>INF</td>
<td>DEFAULT</td>
</tr>
</tbody>
</table>

Interval Data = None Specified

******* NOTICE -- Preliminary machine computations. *******
******* User responsible for assessment and interpretation. *******
Kendall's Tau Parameters

<table>
<thead>
<tr>
<th>TAUC</th>
<th>P-VALUE</th>
<th>MEDIAN</th>
<th>SLOPE</th>
<th>PEAKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEMATIC RECORD</td>
<td>-0.108</td>
<td>0.420</td>
<td>-3.091</td>
<td>29</td>
</tr>
</tbody>
</table>

ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III

LOGARITHMIC

<table>
<thead>
<tr>
<th>LOAD</th>
<th>STANDARD DEVIATION</th>
<th>SKEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMA W/O REG. INFO</td>
<td>2.4436</td>
<td>0.2774</td>
</tr>
<tr>
<td>EMA W/REG. INFO</td>
<td>2.4436</td>
<td>0.2774</td>
</tr>
</tbody>
</table>

EMA ESTIMATE OF MSE OF SKEW W/O REG. INFO (AT-SITE) 0.1959
EMA ESTIMATE OF MSE OF SKEW W/SYSTEMATIC ONLY (AT-SITE) 0.1959

ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

<table>
<thead>
<tr>
<th>EXCEEDANCE PROBABILITY</th>
<th>ANNUAL</th>
<th>EMA W/O REG. INFO</th>
<th>EMA W/O REG. INFO</th>
<th>VARIANCE</th>
<th>68% CONFIDENCE INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESTIMATE</td>
<td>ESTIMATE</td>
<td>OF ESTIMATE</td>
<td>LOWER</td>
<td>UPPER</td>
</tr>
<tr>
<td>0.9950</td>
<td>57.8</td>
<td>63.5</td>
<td>0.0155</td>
<td>40.6</td>
<td>73.7</td>
</tr>
<tr>
<td>0.9900</td>
<td>66.7</td>
<td>71.9</td>
<td>0.0119</td>
<td>49.1</td>
<td>82.7</td>
</tr>
<tr>
<td>0.9500</td>
<td>99.4</td>
<td>102.5</td>
<td>0.0059</td>
<td>80.8</td>
<td>116.5</td>
</tr>
<tr>
<td>0.9000</td>
<td>123.6</td>
<td>125.2</td>
<td>0.0043</td>
<td>104.3</td>
<td>142.3</td>
</tr>
<tr>
<td>0.8000</td>
<td>161.6</td>
<td>161.1</td>
<td>0.0033</td>
<td>140.3</td>
<td>183.8</td>
</tr>
<tr>
<td>0.6667</td>
<td>208.6</td>
<td>206.0</td>
<td>0.0029</td>
<td>183.5</td>
<td>236.2</td>
</tr>
<tr>
<td>0.5000</td>
<td>274.0</td>
<td>269.5</td>
<td>0.0029</td>
<td>241.9</td>
<td>310.8</td>
</tr>
<tr>
<td>0.4292</td>
<td>307.1</td>
<td>302.1</td>
<td>0.0030</td>
<td>271.1</td>
<td>349.4</td>
</tr>
<tr>
<td>0.2000</td>
<td>473.3</td>
<td>470.4</td>
<td>0.0038</td>
<td>413.3</td>
<td>552.6</td>
</tr>
<tr>
<td>0.1000</td>
<td>634.8</td>
<td>640.4</td>
<td>0.0053</td>
<td>544.4</td>
<td>769.1</td>
</tr>
<tr>
<td>0.0400</td>
<td>873.3</td>
<td>902.0</td>
<td>0.0084</td>
<td>726.1</td>
<td>1125.0</td>
</tr>
<tr>
<td>0.0200</td>
<td>1077.1</td>
<td>1134.0</td>
<td>0.0116</td>
<td>870.8</td>
<td>1463.0</td>
</tr>
<tr>
<td>0.0100</td>
<td>1303.0</td>
<td>1400.0</td>
<td>0.0157</td>
<td>1022.0</td>
<td>1871.0</td>
</tr>
<tr>
<td>0.0050</td>
<td>1553.0</td>
<td>1705.0</td>
<td>0.0206</td>
<td>1181.0</td>
<td>2365.0</td>
</tr>
<tr>
<td>0.0020</td>
<td>1928.0</td>
<td>2177.0</td>
<td>0.0284</td>
<td>1402.0</td>
<td>3177.0</td>
</tr>
</tbody>
</table>

ANNUAL FREQUENCY CURVE -- LOG-PEARSON TYPE III

LOGARITHMIC

<table>
<thead>
<tr>
<th>LOAD</th>
<th>STANDARD DEVIATION</th>
<th>SKEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMA W/O REG. INFO</td>
<td>2.4436</td>
<td>0.2774</td>
</tr>
<tr>
<td>EMA W/REG. INFO</td>
<td>2.4436</td>
<td>0.2774</td>
</tr>
</tbody>
</table>

EMA ESTIMATE OF MSE OF SKEW W/O REG. INFO (AT-SITE) 0.1959
EMA ESTIMATE OF MSE OF SKEW W/SYSTEMATIC ONLY (AT-SITE) 0.1959

ANNUAL FREQUENCY CURVE -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

<table>
<thead>
<tr>
<th>EXCEEDANCE PROBABILITY</th>
<th>ANNUAL</th>
<th>EMA W/O REG. INFO</th>
<th>EMA W/O REG. INFO</th>
<th>VARIANCE</th>
<th>68% CONFIDENCE INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESTIMATE</td>
<td>ESTIMATE</td>
<td>OF ESTIMATE</td>
<td>LOWER</td>
<td>UPPER</td>
</tr>
<tr>
<td>0.9950</td>
<td>57.8</td>
<td>63.5</td>
<td>0.0155</td>
<td>40.6</td>
<td>73.7</td>
</tr>
<tr>
<td>0.9900</td>
<td>66.7</td>
<td>71.9</td>
<td>0.0119</td>
<td>49.1</td>
<td>82.7</td>
</tr>
<tr>
<td>0.9500</td>
<td>99.4</td>
<td>102.5</td>
<td>0.0059</td>
<td>80.8</td>
<td>116.5</td>
</tr>
<tr>
<td>0.9000</td>
<td>123.6</td>
<td>125.2</td>
<td>0.0043</td>
<td>104.3</td>
<td>142.3</td>
</tr>
<tr>
<td>0.8000</td>
<td>161.6</td>
<td>161.1</td>
<td>0.0033</td>
<td>140.3</td>
<td>183.8</td>
</tr>
<tr>
<td>0.6667</td>
<td>208.6</td>
<td>206.0</td>
<td>0.0029</td>
<td>183.5</td>
<td>236.2</td>
</tr>
<tr>
<td>0.5000</td>
<td>274.0</td>
<td>269.5</td>
<td>0.0029</td>
<td>241.9</td>
<td>310.8</td>
</tr>
<tr>
<td>0.4292</td>
<td>307.1</td>
<td>302.1</td>
<td>0.0030</td>
<td>271.1</td>
<td>349.4</td>
</tr>
<tr>
<td>0.2000</td>
<td>473.3</td>
<td>470.4</td>
<td>0.0038</td>
<td>413.3</td>
<td>552.6</td>
</tr>
<tr>
<td>0.1000</td>
<td>634.8</td>
<td>640.4</td>
<td>0.0053</td>
<td>544.4</td>
<td>769.1</td>
</tr>
<tr>
<td>0.0400</td>
<td>873.3</td>
<td>902.0</td>
<td>0.0084</td>
<td>726.1</td>
<td>1125.0</td>
</tr>
<tr>
<td>0.0200</td>
<td>1077.1</td>
<td>1134.0</td>
<td>0.0116</td>
<td>870.8</td>
<td>1463.0</td>
</tr>
<tr>
<td>0.0100</td>
<td>1303.0</td>
<td>1400.0</td>
<td>0.0157</td>
<td>1022.0</td>
<td>1871.0</td>
</tr>
<tr>
<td>0.0050</td>
<td>1553.0</td>
<td>1705.0</td>
<td>0.0206</td>
<td>1181.0</td>
<td>2365.0</td>
</tr>
<tr>
<td>0.0020</td>
<td>1928.0</td>
<td>2177.0</td>
<td>0.0284</td>
<td>1402.0</td>
<td>3177.0</td>
</tr>
</tbody>
</table>
INPUT DATA LISTING

<table>
<thead>
<tr>
<th>YEAR</th>
<th>VALUE</th>
<th>CODES</th>
<th>LOW</th>
<th>HIGH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>654.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>373.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>257.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>228.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>194.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>209.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>479.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1300.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>648.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>435.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>265.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>79.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>88.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>144.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>517.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>139.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>211.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>254.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>205.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>331.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>304.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>497.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>772.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>159.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>146.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>290.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>249.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>176.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>301.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explanation of peak discharge qualification codes

<table>
<thead>
<tr>
<th>PeakFq CODE</th>
<th>NWIS CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3</td>
<td>Dam failure, non-recurrent flow anomaly</td>
</tr>
<tr>
<td>G</td>
<td>8</td>
<td>Discharge greater than stated value</td>
</tr>
<tr>
<td>X</td>
<td>3+8</td>
<td>Both of the above</td>
</tr>
<tr>
<td>L</td>
<td>4</td>
<td>Discharge less than stated value</td>
</tr>
<tr>
<td>K</td>
<td>6 OR C</td>
<td>Known effect of regulation or urbanization</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>Historic peak</td>
</tr>
</tbody>
</table>

- Minus-flagged discharge -- Not used in computation
- -8888.0 -- No discharge value given
- Minus-flagged water year -- Historic peak used in computation
Empirical Frequency Curves - Hirsch-Stedinger Plotting Positions

<table>
<thead>
<tr>
<th>Year</th>
<th>Discharge</th>
<th>Rank</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>1300.0</td>
<td>0.0333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2011</td>
<td>772.0</td>
<td>0.0667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1989</td>
<td>654.0</td>
<td>0.1000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1997</td>
<td>648.0</td>
<td>0.1333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2003</td>
<td>517.0</td>
<td>0.1667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2010</td>
<td>497.0</td>
<td>0.2000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1995</td>
<td>479.0</td>
<td>0.2333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1998</td>
<td>435.0</td>
<td>0.2667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1990</td>
<td>373.0</td>
<td>0.3000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2008</td>
<td>331.0</td>
<td>0.3333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2009</td>
<td>304.0</td>
<td>0.3667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2017</td>
<td>301.0</td>
<td>0.4000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2014</td>
<td>290.0</td>
<td>0.4333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1999</td>
<td>265.0</td>
<td>0.4667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1991</td>
<td>257.0</td>
<td>0.5000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2006</td>
<td>254.0</td>
<td>0.5333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2015</td>
<td>249.0</td>
<td>0.5667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1992</td>
<td>228.0</td>
<td>0.6000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2005</td>
<td>211.0</td>
<td>0.6333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1994</td>
<td>209.0</td>
<td>0.6667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2007</td>
<td>205.0</td>
<td>0.7000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1993</td>
<td>194.0</td>
<td>0.7333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2016</td>
<td>176.0</td>
<td>0.7667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2012</td>
<td>159.0</td>
<td>0.8000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2013</td>
<td>146.0</td>
<td>0.8333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2002</td>
<td>144.0</td>
<td>0.8667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2004</td>
<td>139.0</td>
<td>0.9000</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2001</td>
<td>88.0</td>
<td>0.9333</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>79.0</td>
<td>0.9667</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

EMA Representation of Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Observed Q</th>
<th>EMA Q</th>
<th>Perception Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>654.0</td>
<td>654.0</td>
<td>654.0 - 654.0</td>
</tr>
<tr>
<td>1990</td>
<td>373.0</td>
<td>373.0</td>
<td>373.0 - 373.0</td>
</tr>
<tr>
<td>1991</td>
<td>257.0</td>
<td>257.0</td>
<td>257.0 - 257.0</td>
</tr>
<tr>
<td>1992</td>
<td>228.0</td>
<td>228.0</td>
<td>228.0 - 228.0</td>
</tr>
<tr>
<td>1993</td>
<td>194.0</td>
<td>194.0</td>
<td>194.0 - 194.0</td>
</tr>
<tr>
<td>1994</td>
<td>209.0</td>
<td>209.0</td>
<td>209.0 - 209.0</td>
</tr>
<tr>
<td>1995</td>
<td>479.0</td>
<td>479.0</td>
<td>479.0 - 479.0</td>
</tr>
<tr>
<td>1996</td>
<td>1300.0</td>
<td>1300.0</td>
<td>1300.0 - 1300.0</td>
</tr>
<tr>
<td>1997</td>
<td>648.0</td>
<td>648.0</td>
<td>648.0 - 648.0</td>
</tr>
<tr>
<td>1998</td>
<td>435.0</td>
<td>435.0</td>
<td>435.0 - 435.0</td>
</tr>
</tbody>
</table>
End PeakFQ analysis.

Stations processed : 1
Number of errors : 0
Stations skipped : 0
Station years : 29

Data records may have been ignored for the stations listed below.
(Card type must be Y, Z, N, H, I, 2, 3, 4, or *.)
(2, 4, and * records are ignored.)

For the station below, the following records were ignored:
FINISHED PROCESSING STATION: 12323600 USGS Silver Bow Creek at Opportunity
Appendix B: Logarithmic Interpolation, Regional Regression and Weighted Calculations
StreamStats West Regression Calculations

<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>County</th>
<th>Study Reach River Station</th>
<th>Basin Area (mi²)</th>
<th>F (%)</th>
<th>P (in)</th>
<th>Estimated Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323250</td>
<td>Silver Bow Cr. Bl Blackfoot Cr. at Butte, MT*</td>
<td>Silver Bow</td>
<td>16.3</td>
<td>124.3</td>
<td>50.8</td>
<td>18.14</td>
<td>218</td>
</tr>
<tr>
<td>12323600</td>
<td>Silver Bow Creek at Opportunity, MT*</td>
<td>Silver Bow</td>
<td>NA</td>
<td>342.6</td>
<td>48.8</td>
<td>16.42</td>
<td>547, 1,390</td>
</tr>
</tbody>
</table>

1. 3% or less of total area is in the StreamStats Southwest Region. Values are based on West Results.

Regression equation for indicated Q_{SEP} with SEP, in percent

<table>
<thead>
<tr>
<th>West hydrologic region</th>
<th>Equation</th>
<th>SEP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Q_{0.5} = 0.947 A^{0.863} P^{1.34} (F + 1)^{0.14}$</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td>$Q_{1.0} = 0.131 A^{0.860} P^{1.24} (F + 1)^{0.04}$</td>
<td>56.5</td>
</tr>
<tr>
<td></td>
<td>$Q_{2.0} = 0.139 A^{0.890} P^{1.36} (F + 1)^{0.07}$</td>
<td>55.7</td>
</tr>
<tr>
<td>12323250</td>
<td>$Q_{10} = 0.906 A^{0.879} P^{1.38} (F + 1)^{0.06}$</td>
<td>53.4</td>
</tr>
<tr>
<td>12323600</td>
<td>$Q_{10} = 2.44 A^{0.883} P^{1.29} (F + 1)^{0.08}$</td>
<td>52.8</td>
</tr>
<tr>
<td>12323250</td>
<td>$Q_{1} = 6.61 A^{0.831} P^{1.58} (F + 1)^{0.09}$</td>
<td>53.2</td>
</tr>
<tr>
<td>12323600</td>
<td>$Q_{2} = 12.2 A^{0.818} P^{1.42} (F + 1)^{0.09}$</td>
<td>54.2</td>
</tr>
<tr>
<td>12323250</td>
<td>$Q_{5} = 21.5 A^{0.806} P^{1.32} (F + 1)^{0.04}$</td>
<td>56.0</td>
</tr>
<tr>
<td>12323600</td>
<td>$Q_{10} = 35.5 A^{0.766} P^{1.22} (F + 1)^{0.10}$</td>
<td>58.0</td>
</tr>
<tr>
<td>12323250</td>
<td>$Q_{0.1} = 63.5 A^{0.763} P^{1.12} (F + 1)^{0.15}$</td>
<td>61.4</td>
</tr>
</tbody>
</table>
Weighting Method

As stated in the section Flood Distribution, the Pearson Type III distribution with log transformation of the peak-flow data should be the base method for the analysis of annual series data. Thus, the peak-flow statistic \(Q_t \) (such as the 0.01 AEP) is transformed using base-10 logarithms:

\[
X_t = \log_{10}(Q_t)
\]

where \(Q_t \) is the estimated peak-flow statistic at site \(i \), and \(X_t \) is the log-transformed variable. All subsequent operations are performed on the transformed variable \(X_t \). The weighted estimate is calculated using variances as

\[
X_{\text{weighted}, i} = \frac{X_{\text{site}, i} \times V_{\text{reg}, i} + X_{\text{reg}, i} \times V_{\text{site}, i}}{V_{\text{site}, i} + V_{\text{reg}, i}}
\]

where all \(X \) and \(V \) variables are in \(\log_{10} \) units, \(X_{\text{weighted}, i} \) is the weighted estimate for site \(i \), \(X_{\text{site}, i} \) is the at-site estimate at site \(i \), \(X_{\text{reg}, i} \) is the regional estimate at site \(i \), \(V_{\text{site}, i} \) is the variance of the at-site estimate at site \(i \), and \(V_{\text{reg}, i} \) is the variance of the regional estimate at site \(i \).

As described in appendix 7, the Expected Moments Algorithm (EMA) provides a direct fit of the log-Pearson Type III distribution, which includes an estimate of the variance \(V_{\text{site}, i} \) corresponding to each computed AEP.
For locations that are ungaged and located between two gaged locations with reliable period of record (10 yrs) Equation utilizes drainage areas and flows.

* Values are weighted w/ RRE

\[
\log Q_{a,25} = \log Q_{a,10} + \frac{\log Q_{a,10} - \log Q_{a,25}}{\log D_{A,25} - \log D_{A,50}} \log D_{A,50} - \log D_{A,10} \\

\text{where}
\]

- \(Q_{a,25}\) is the AEP-piece peak flow at ungaged site \(U\), in cubic feet per second.
- \(Q_{a,10}\) is the AEP-piece peak flow for the upstream gaging station \(G_1\), in cubic feet per second.
- \(Q_{a,50}\) is the AEP-piece peak flow at the downstream gaging station \(G_2\), in cubic feet per second.
- \(D_{A,10}\) is the drainage area at the downstream gaging station \(G_2\), in square miles.
- \(D_{A,25}\) is the drainage area at the upstream gaging station \(G_1\), in square miles.
- \(D_{A,50}\) is the drainage area at ungaged site \(U\), in square miles.

<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>County</th>
<th>Study Reach/Station (miles)</th>
<th>Incremental Drainage Area (mi²)</th>
<th>GIS Cumulative Basin Area (mi²)</th>
<th>Cumulative Basin Area (mi²)</th>
<th>10% Annual Chance</th>
<th>10% Annual Chance</th>
<th>2% Annual Chance</th>
<th>2% Annual Chance</th>
<th>1% Annual Chance</th>
<th>1% Annual Chance</th>
<th>1% Annual Chance</th>
<th>1% Annual Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323160 600</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>17</td>
<td>8</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>170</td>
<td>214</td>
<td>258</td>
<td>302</td>
<td>354</td>
<td>414</td>
<td>478</td>
</tr>
<tr>
<td>12323160 500</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>11.6</td>
<td>6</td>
<td>137</td>
<td>264</td>
<td>125</td>
<td>170</td>
<td>214</td>
<td>258</td>
<td>302</td>
<td>354</td>
<td>414</td>
<td>478</td>
</tr>
<tr>
<td>12323160 400</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>8.6</td>
<td>4</td>
<td>188</td>
<td>299</td>
<td>125</td>
<td>170</td>
<td>214</td>
<td>258</td>
<td>302</td>
<td>354</td>
<td>414</td>
<td>478</td>
</tr>
<tr>
<td>12323160 300</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>6.6</td>
<td>3.8</td>
<td>274</td>
<td>351</td>
<td>258</td>
<td>351</td>
<td>430</td>
<td>518</td>
<td>642</td>
<td>776</td>
<td>914</td>
<td>1,058</td>
</tr>
<tr>
<td>12323160 200</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>4.3</td>
<td>15</td>
<td>279</td>
<td>431</td>
<td>258</td>
<td>351</td>
<td>430</td>
<td>518</td>
<td>642</td>
<td>776</td>
<td>914</td>
<td>1,058</td>
</tr>
<tr>
<td>12323160 100</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>10.9</td>
<td>6</td>
<td>212</td>
<td>324</td>
<td>324</td>
<td>416</td>
<td>502</td>
<td>630</td>
<td>812</td>
<td>1,044</td>
<td>1,327</td>
<td>1,654</td>
</tr>
<tr>
<td>12323600 1250</td>
<td>Silver Bow Creek at</td>
<td>Silver Bow</td>
<td>0.7</td>
<td>7</td>
<td>335</td>
<td>335</td>
<td>285</td>
<td>691</td>
<td>988</td>
<td>1,257</td>
<td>1,572</td>
<td>2,452</td>
<td>2,304</td>
<td>3,094</td>
</tr>
</tbody>
</table>

Log Interpolation of Gaged Analysis

<table>
<thead>
<tr>
<th>Node/USGS Station ID</th>
<th>Location Description</th>
<th>County</th>
<th>Study Reach/Station (miles)</th>
<th>Incremental Drainage Area (mi²)</th>
<th>GIS Cumulative Basin Area (mi²)</th>
<th>Cumulative Basin Area (mi²)</th>
<th>10% Annual Chance</th>
<th>10% Annual Chance</th>
<th>2% Annual Chance</th>
<th>2% Annual Chance</th>
<th>1% Annual Chance</th>
<th>1% Annual Chance</th>
<th>1% Annual Chance</th>
<th>1% Annual Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>12323160 600</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>17</td>
<td>8</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>170</td>
<td>214</td>
<td>258</td>
<td>302</td>
<td>354</td>
<td>414</td>
<td>478</td>
</tr>
<tr>
<td>12323160 500</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>11.6</td>
<td>6</td>
<td>137</td>
<td>264</td>
<td>125</td>
<td>170</td>
<td>214</td>
<td>258</td>
<td>302</td>
<td>354</td>
<td>414</td>
<td>478</td>
</tr>
<tr>
<td>12323160 400</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>8.6</td>
<td>4</td>
<td>188</td>
<td>299</td>
<td>125</td>
<td>170</td>
<td>214</td>
<td>258</td>
<td>302</td>
<td>354</td>
<td>414</td>
<td>478</td>
</tr>
<tr>
<td>12323160 300</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>6.6</td>
<td>3.8</td>
<td>274</td>
<td>351</td>
<td>258</td>
<td>351</td>
<td>430</td>
<td>518</td>
<td>642</td>
<td>776</td>
<td>914</td>
<td>1,058</td>
</tr>
<tr>
<td>12323160 200</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>4.3</td>
<td>15</td>
<td>279</td>
<td>431</td>
<td>258</td>
<td>351</td>
<td>430</td>
<td>518</td>
<td>642</td>
<td>776</td>
<td>914</td>
<td>1,058</td>
</tr>
<tr>
<td>12323160 100</td>
<td>Silver Bow Cr. Sc.</td>
<td>Silver Bow</td>
<td>10.9</td>
<td>6</td>
<td>212</td>
<td>324</td>
<td>324</td>
<td>416</td>
<td>502</td>
<td>630</td>
<td>812</td>
<td>1,044</td>
<td>1,327</td>
<td>1,654</td>
</tr>
<tr>
<td>12323600 1250</td>
<td>Silver Bow Creek at</td>
<td>Silver Bow</td>
<td>0.7</td>
<td>7</td>
<td>335</td>
<td>335</td>
<td>285</td>
<td>691</td>
<td>988</td>
<td>1,257</td>
<td>1,572</td>
<td>2,452</td>
<td>2,304</td>
<td>3,094</td>
</tr>
</tbody>
</table>

For locations that are ungaged and located between two gaged locations with reliable period of record (10 yrs) Equation utilizes drainage areas and flows.

* Values are weighted w/ RRE

[Image of a graph showing the relationship between drainage area and discharge for different stations and years.]
Appendix C: Digital Data and Calculation Files