The SYC provides a predictable supply of timber to Montana’s wood products industry. DNRC manages <3% of the state’s timberland, but annually contributes 15-20% of the statewide harvest volume.

What factors most affected the results? Although the results of this calculation are similar to previous calculations, there are important factors that distinguish this effort from past efforts and that provide a significant contribution to these results - namely improved data, improved growth and yield estimates, and a reflection of changes in forest conditions on DNRC lands.

The data used for this calculation represents a significant step forward for DNRC in terms of quality, and that is reflected in the results of the calculation. DNRC collected and relied heavily on data from its own lands for a large part of this calculation, rather than data from other sources as was done in past calculations. This new data reflects influences of past management and mortality factors on DNRC lands, thus providing a more accurate estimation of existing inventory and potential growth on forested state trust lands.

DNRC used the FVS growth and yield model for this calculation, which is a nationally recognized model widely-used by several federal, state, and private forest managers. This model includes variants that were developed specifically for Montana forests. DNRC’s data was also used to further calibrate the model to the conditions and expected growth rates observed on forested state trust lands. This resulted in more accurate predictions of forest growth compared to previous calculations.

Over 105,000 acres of state trust lands were substantially affected by damaging events including wildfires and insect outbreaks since 2004 that were not accounted for in the 2011 calculation. These influences were particularly prevalent on lands administered by the Southwestern Land Office, Central Land Office, and on land offices in eastern Montana. This caused significant mortality that reduced the amount of standing volume in some forest types (ponderosa pine, lodgepole pine, Douglas-fir) that represent large acreages in those areas. The reduction in inventory due to those factors largely offset the additional 4.6 MMBF of volume contributed by the newly acquired lands to the annual sustainable yield.

Qualifications and Recommendations
The primary objective of this project was to determine at a strategic level the amount of timber that the DNRC can sustainably harvest from forested trust lands; however, it was not intended to determine management direction for individual stands. A range of harvest treatment types used by DNRC were simulated and available for use by the model, and although the model is not deterministic with regards to management of individual stands, the types of management used by the model should be reflected in on-the-ground management. The third scenario represents DNRC’s preferred recommendation to the Land Board for adoption but would not go into effect until the U.S. District Court of Montana accepts the negotiated settlement agreement and lifts the current injunction.

Purpose and need for the Sustainable Yield Calculation
The Trust Land Management Division of the Montana DNRC manages ~730,000 commercial forest acres (FIGURE 1) for the benefit of the Common Schools and other endowed institutions. Management activities on those lands focus on providing a consistent and long-term revenue source for the trust beneficiaries, which is generated by selling a consistent annual timber volume. The amount of timber sold annually is determined through a sustainable yield calculation.

MCA 77-5-221 defines sustainable yield as “the quantity of timber that can be harvested from forested state lands each year in accordance with all applicable state and federal laws, including but not limited to the laws pertaining to wildlife, recreation, and maintenance of watersheds, and in compliance with water quality standards that protect fisheries and aquatic life and that are adopted under the provisions of Title 75, chapter 5, taking into account the ability of state forests to generate replacement tree growth.”

Qualifications and Recommendations

For further information on the 2015 Sustainable Yield Calculation and FAQs, please visit: http://1.usa.gov/1PBfPJO

Persons with disabilities who need an alternative, accessible format of this document should contact the Montana Department of Natural Resources and Conservation - Trust Lands Division, 2705 Spurgin Road, Missoula, MT 59804-3199. Phone (406) 542-4300 or fax (406) 542-4217. 100 copies of this document were published at a cost of $50.00.

DNRC SUSTAINABLE YIELD CALCULATIONS

<table>
<thead>
<tr>
<th>YEARS</th>
<th>CALCULATION (MMBF)</th>
<th>MANAGED ACRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>56.0</td>
<td>359,700</td>
</tr>
<tr>
<td>1996</td>
<td>42.2</td>
<td>365,769</td>
</tr>
<tr>
<td>2004</td>
<td>53.2</td>
<td>430,784</td>
</tr>
<tr>
<td>2011</td>
<td>57.6</td>
<td>465,149</td>
</tr>
<tr>
<td>2015</td>
<td>56.9*</td>
<td>570,510</td>
</tr>
</tbody>
</table>

*See Qualifications & Recommendations Section
areas, potential suitable habitat), and bald eagle (nest sites). Water resource data included the locations of sensitive watersheds and streamside management zones (SMZ) and riparian management zones (RMZ).

Operability data included stands identified as deferred from management, areas suitable only for harvesting using helicopters, areas under conservation agreements or easements, and Federal wild and scenic river corridors.

The Forest Vegetation Simulator (FVS) growth and yield model was used to determine growth and potential yield for the model. This model has two variants that apply to forests in Montana; the Inland Empire variant was used for the Northwestern and Southwestern Land Offices, and the Eastern Montana variant was used for the Central and east-side Land Offices. To differentiate among the various ranges of site potential for a given timber type, DNRC supplied information regarding potential growth, habitat types, and site index for use by FVS. To ensure the estimated forest growth, yield, and management activities were modeled, DNRC reviewed those results and adjustments were made to calibrate the model as needed.

Following calibration of the FVS model, simulations were made of DNRC’s types of management actions implemented on forested trust lands. These simulations determined the expected growth associated with management activities over time and the harvest volumes associated with those activities for use in the optimization model.

An optimization model was used to apply the management constraints and determine the annual sustainable yield. Constraints are limitations placed on the model that restrict when, where, which, and how often harvesting treatments may be applied. The constraints were determined by laws, administrative rules, and management plans applicable to DNRC’s forest management. These included constraints related to operability, harvest and silviculture, wildlife habitat, and water resources.

Results of the 2015 SYC
For this calculation, four scenarios were evaluated at the state-wide level. Two scenarios were evaluated to address uncertainty at the onset of the calculation regarding management of grizzly bear habitat in the Stillwater Unit. The third scenario incorporated the terms of the settlement agreement reached between the plaintiffs and DNRC in a U.S. District Court case regarding management of grizzly bear habitat in the Stillwater Unit. The fourth scenario aimed to identify the impact of the acquired lands on the annual sustainable yield. Each scenario evaluated a planning horizon of 200 years.

First Scenario: The Stillwater Grizzly Bear Core (FIGURE 3) was made available for management, resulting in an annual sustainable harvest level of 57.8 MMBF, with 582,945 acres contributing to the solution. 146,434 acres were not considered in the solution and received no management—these areas are primarily stands deferred from management and riparian areas.

Second scenario: Management in Stillwater Grizzly Bear Core was restricted, resulting in an annual sustainable harvest level of 55.5 MMBF, with 561,611 acres contributing to the solution. 167,768 acres were not included in the solution due to constraints similar to first scenario.

Third scenario: Management was restricted in areas of the Stillwater Unit designated as Grizzly Bear Security Zones (FIGURE 3) in accordance with the settlement agreement for the U.S. District Court case, resulting in an annual sustainable harvest level of 56.9 MMBF, with 570,510 acres contributing to the solution. 158,869 acres were not included in the solution due to constraints similar to the first two scenarios.

Fourth scenario: The acquired lands were withdrawn from the model developed for the first scenario where Stillwater Unit Grizzly Bear Core was available for management in order to determine the impact of those acres on the sustainable yield. This resulted in an annual sustainable harvest level of 53.2 MMBF, with 527,456 acres contributing to the solution and inferring that the acquired lands contribute 4.6 MMBF to the annual sustainable yield.

For all scenarios, acres identified as suitable only for helicopter logging did not contribute to the annual sustainable yield. These acres were considered to provide an opportunistic amount of volume above and beyond the calculated yields when specific markets are available. When market conditions are feasible for helicopter logging, those lands could contribute an additional 1.1 MMBF to the annual sustainable yield.