Form No. 630 R05/2014

PETITION FOR CONTROLLED GROUNDWATER AREA

This form can be filed by a state or local public health agency for identified public health risks; a

municipality, county, conservation district, or local water quality district formed under Title 7, chapter 13, part 45; or by at least one third of the water right holders in an area proposed for designation of a controlled groundwater area. An incomplete or non-qualifying petition will be returned.

A fee of \$1500 must accompany this petition. Petitioners must also pay reasonable costs of giving notice pursuant to MCA § 85-2-506 and A.R.M. 36.12.103

Make checks payable to "DNRC"

Filing Fee: \$1500.00

RECEIVED
JAN 18 2017
DNRC - WRD - BILLINGS
FOR DEPARTMENT USE ONLY
Application # 3010019 Basin 43Q
Date 01-18-2017
ime 11:00 (A)/ PM
Rec'd By JL
ee Rec'd \$ 1500,00 Check # 9739
Deposit Receipt # BLS1715717
Pavor Tasmon Gassiences

Date

Refund \$

DEOEUV

Contact Person:	\square Contact is Petitioner \square	Contact is Consultant	Contact is Att	orney 🗖 Contact is Other
Contact Name	Marilyn Tapia, Director	- RiverStone Health		
Mailing Address	123 South 27th Street			
City Billings		State	MT	Zip 59101
Phone Numbers:	Home	Work 406-256	2770 C	ell
Email Address	marilyn.tap@riverstoneh	ealth.org		

General Location of Proposed Controlled Groundwater Area:

Outskirts of Billings, Montana (Lockwood), Yellowstone County

TYPE OF DESIGNATION OR PROVISIONS REQUESTED: Is the petition for a permanent or temporary designation?

Permanent. If permanent, proceed to Section 1.

Temporary. If temporary, proceed to Section 2.

......

Section 1. <u>PERMANENT DESIGNATION PROPOSED</u> Please provide the following:

A. MCA § 85-2-506 requires that this petition must contain analysis prepared by a hydrogeologist, a qualified scientist, or a qualified licensed professional engineer concluding that one or more of the following criteria:

Current or projected reductions of recharge to the aquifer or aquifers in the proposed controlled ground water area will cause ground water levels to decline to the extent that water right holders cannot reasonably exercise their water rights;

Current or projected ground water withdrawals from the aquifer or aquifers in the proposed controlled ground water area have induced or altered or will induce or alter contaminant migration exceeding relevant water quality standards;

Current or projected ground water withdrawals from the aquifer or aquifers in the proposed controlled ground water area have impaired or will impair ground water quality necessary for water right holders to reasonably exercise their water rights based on relevant water quality standards;

Ground water within the proposed controlled ground water area is not suited for beneficial use; or public health, safety, or welfare is or will become at risk.

- B. Please attach all supporting information, including the name, address and qualifications of the person who prepared the analysis. See attached
- C. Explain why the condition occurring or likely to occur cannot be appropriately mitigated. See attached
- D. Describe the kind of corrective controls or provisions you are requesting. A controlled ground water area may include but is not limited to the following control provisions:

A provision closing the controlled ground water area to further appropriation of ground water;

A provision restricting the development of future ground water appropriations in the controlled ground water area by flow, volume, purpose, aquifer, depth, water temperature, water quality, density, or other criteria that the department determines necessary;

A provision requiring measurement of future ground water or surface water appropriations;

A provision requiring the filing of notice on land records within the boundary of a permanent controlled ground water area to inform prospective holders of an interest in the property of the existence of a permanent controlled ground water area.

A provision for well spacing requirements, well construction constraints, and prior department approval before well drilling, unless the well is regulated pursuant to Title 82, chapter 11;

A provision for mitigation of ground water withdrawals;

A provision for water quality testing;

A provision for data reporting to the department

Proceed to Section 3.

Section 2. TEMPORARY DESIGNATION PROPOSED Please provide the following:

- A. A study plan that may include measurement, water quality testing, and reporting requirements for new and/or replacement wells during the period of the temporary closure.
- B. Include information on funding for any proposed investigations including any plans for pursuing funding under the renewable resource grant and loan program, and any planned investigation under the ground water investigation program.

.....................

C. Describe how any necessary investigations can be completed in a timely fashion not to exceed 6 years.

Proceed to Section 3.

Page 2

Section 3. PERMANENT OR TEMPORARY DESIGNATION PROPOSED Please provide the following:

- A. Map: A U.S. Geological Survey quadrangle map, or one of similar size, scale and detail level <u>must</u> accompany the petition. In addition to the information provided on the USGS map, the map <u>must</u> also show the following:
 - a. north direction;
 - b. township and range numbers;
 - c. section corners and numbers;
 - d. accurate outline of the proposed controlled area;
 - i. location of any known groundwater recording equipment;
 - ii. points of diversion of all groundwater users, including wells and developed springs.
- B. Land Ownership: <u>Attach</u> a list to this petition of all the landowners within the proposed boundaries of the controlled groundwater area. Land ownership may be found at the county assessors office or at <u>http://svc.mt.gov/msl/mtcadastral/</u> The list must include the name and complete mailing address of the property owner. See attached

See attached

WATER RESOURCES OFFICES

MONTANA DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION Water Resources Division - Water Rights Bureau 1424 9th Avenue, PO Box 201601, Helena, MT 59620-1601 Phone: 406-444-6610 Website: http://dnrc.mt.gov/wrd/

- BILLINGS: AIRPORT INDUSTRIAL PARK, 1371 RIMTOP DR., BILLINGS MT 59105-1978 PHONE: 406-247-4415 FAX: 406-247-4416 SERVING: Big Horn, Carbon, Carter, Custer, Fallon, Powder River, Prairie, Rosebud, Stillwater, Sweet Grass, Treasure, and Yellowstone Counties
- BOZEMAN: 2273 BOOT HILL COURT, SUITE 110, BOZEMAN MT 59715 PHONE: 406-586-3136 FAX: 406-587-9726 SERVING: Gallatin, Madison, and Park Counties
- GLASGOW: 222 6TH STREET SOUTH, PO BOX 1269, GLASGOW MT 59230-1269 PHONE: 406-228-2561 FAX: 406-228-8706 SERVING: Daniels, Dawson, Garfield, McCone, Phillips, Richland, Roosevelt, Sheridan, Valley, and Wibaux Counties
- HAVRE: 210 6TH AVENUE, PO BOX 1828, HAVRE MT 59501-1828 PHONE: 406-265-5516 FAX: 406-265-2225 SERVING: Blaine, Chouteau, Glacier, Hill, Liberty, Pondera, Teton, and Toole Counties

- HELENA: 1424 9TH AVE., PO BOX 201601, HELENA MT 59620-1601 PHONE: 406-444-6999 FAX: 406-444-9317 SERVING: Beaverhead, Broadwater, Deer Lodge, Jefferson, Lewis and Clark, Powell, and Silver Bow Counties
- KALISPELL: 655 TIMBERWOLF PARKWAY, SUITE 4, KALISPELL MT 59901-1215 PHONE: 406-752-2288 FAX: 406-752-2843 SERVING: Flathead, Lake, Lincoln, and Sanders Counties
- LEWISTOWN: 613 NORTHEAST MAIN ST., SUITE E, LEWISTOWN MT 59457-2020 PHONE: 406-538-7459 FAX: 406-538-7089 SERVING: Cascade, Fergus, Golden Valley, Judith Basin, Meagher, Musselshell, Petroleum, and Wheatland Counties

MISSOULA: 2705 SPURGIN RD. BLDG. C, PO BOX 5004, MISSOULA MT 59806-5004 PHONE: 406-721-4284 FAX: 406-542-5899 SERVING: Granite, Mineral, Missoula, and Ravalli Counties

See attached

SIGNATURES

This form must be filed by a state or local public health agency for identified public health risks; a municipality, county, conservation district, or local water quality district formed under Title 7, chapter 13, part 45; or by at least one third of the water right holders in an area proposed for designation of a controlled groundwater area. **Print or type** the full name of the water user and mailing address and sign on the appropriate line. Attach additional sheets if necessary.

.

WE THE UNDERSIGNED GROUNDWATER USERS IN THE PROPOSED CONTROLLED AREA PETITION THE DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION FOR A CONTROLLED GROUNDWATER AREA IN ACCORDANCE WITH § 85-2-506, MCA AND THIS PETITION.

1. John Fellon, Health Uffer 1 Mail Address Instruct Strue Health 1. S. 2790 Street 1 Mail Address Phone 3. 1 Mail Address Phone 4. 1 Mail Address Phone 5. 1 Mail Address Phone 6. 1 Mail Address Phone 6. 1 Mail Address Phone 8. 1 Mail Address Phone 6. 1 Mail Address Phone 8. 1 Mail Address Phone 9. 1 Mail Address Phone 10. 1 Mail Address Phone 11. 1 Mail Address Phone 12. 1 Mail Address Phone 13. 1 Mail Address Phone 14. 1	Printed Name	Signature				
Mail Address Dense act - 657 - 6739 1 1 S. 2010 Sheer 2 1 Mail Address Phone 3. 1 Mail Address Phone 4. 1 Mail Address Phone 5. 1 Mail Address Phone 6. 1 Mail Address Phone 6. 1 Mail Address Phone 8. 1 Mail Address Phone 9. 1 Mail Address Phone 9. 1 Mail Address Phone 10. 1 11. 1 Mail Address Phone 12. 1 Mail Address Phone 13. 1 Mail Address Phone 14. 1	1. John Felton, Health Officer	1 Hard				
INS S. THUS Sheef Mail Address Phone 3. / Mail Address Phone 4. / Mail Address Phone 5. / Mail Address Phone 5. / Mail Address Phone 6. / 7. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	Mail Address IR westine Health	Phone 404-657-6434				
2. Bithous at Chief Mail Address Phone 3. / Mail Address Phone 4. / Mail Address Phone 5. / Mail Address Phone 5. / Mail Address Phone 6. / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	123 S. 27th Sheer					
Mail Address Phone 3. / Mail Address Phone 4. / Mail Address Phone 5. / Mail Address Phone 5. / Mail Address Phone 6. / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	2. Billing, ut (910)	/				
3. / Mail Address Phone 4. / Mail Address Phone 5. / Mail Address Phone 6. / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	Mail Address	Phone				
Mail Address Phone 4 / Mail Address Phone 5 / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 13. / Mail Address Phone 14. /	3.					
4. / Mail Address Phone 5. / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 11. / Mail Address Phone 13. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	Mail Address	Phone				
4 / Mail Address Phone 5. / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 13. / Mail Address Phone 14. /						
Mail Address Phone 5. / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	4	/				
5. / Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	Mail Address	Phone				
Mail Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	5	1				
Address Phone 6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	Mail Address	Phone				
6. / Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone						
Mail Address Phone 7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	6.	/				
7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	Mail Address	Phone				
7. / Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /						
Mail Address Phone 8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	7.					
8. / Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	Mail Address	Phone				
Mail Address Phone 9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	8.	1				
9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /	Mail Address	Phone				
9. / Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. /						
Mail Address Phone 10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	9.	/				
10. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	Mail Address	Phone				
No. / Mail Address Phone 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	10					
Inc. Inc. 11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	Mail Address	Phone				
11. / Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone						
Mail Address Phone 12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	11.	1				
12. / Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	Mail Address	Phone				
Mail Address Phone 13. / Mail Address Phone 14. / Mail Address Phone	12	1				
13. / Mail Address Phone 14. / Mail Address Phone	Mail Address	Phone				
13. / Mail Address Phone 14. / Mail Address Phone						
Mail Address Phone 14. / Mail Address Phone	13.	/				
14. / Mail Address Phone	Mail Address	Phone				
14. / Mail Addross Dhone	14					
	Mail Address	Phone				

Printed Name

I

Signature

15.	1	
Mail Address	Phone	
10		
To. Mail Address	Phone	
17.		
Mail Address	Phone	
18	1	
Mail Address	Phone	
<u>19.</u>	Dhana	
Mail Address	Phone	
20.	/	
Mail Address	Phone	
21. Moil Addrosp	/ Phone	
Mail Address	FIIOIIC	
22.	1	
Mail Address	Phone	
22		
23. Mail Address	/ Phone	
Mair Address	Thone	
24.	1	
Mail Address	Phone	
25		
20. Mail Address	Phone	
Mail/Iddieoo		
26.	1	
Mail Address	Phone	
27	1	
Mail Address	Phone	
28.	/	
Mail Address	Phone	
29	1	
Mail Address	Phone	
30.	Dhama	
Mail Address	Phone	
31.	1	
Mail Address	Phone	
32.	/ Dhere	
	Phone	
33.	/	

CONTROLLED GROUNDWATER AREA PETITION SUPPORTING INFORMATION LOCKWOOD SOLVENT GROUNDWATER PLUME SITE BILLINGS, MONTANA

I

Prepared for:

Yellowstone City/County Health Department dba RiverStone Health 123 South 27th Street Billings, Montana 59101

Prepared by:

Tasman Geosciences, Inc. 917 1st Avenue N., Suite 3 Billings, Montana 59101 (406) 259-1033

January 11, 2017

Tasman Project No. Z051000003

TABLE OF CONTENTS

Section TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS...... INTRODUCTION 1 1.0 CGA Description 2 1.1 1.2 2.0 2.1 Regional Geology 5 2.2 LSGPS Geology 5 2.3 24 2.5 Groundwater Recharge/Discharge 6 2.6 2.7 Operable Unit 1 (OU1) 8 2.7.1 Plumes & Plume Status 9 2.8 CGA PETITION CRITERIA 11 3.0 4.0 Permanent CGA Boundary 12 4.1 Vertical Boundary 12 4.2 Basis for CGA Boundary 13 4.3 4.4 PROPOSED GROUNDWATER USAGE RESTRICTIONS 14 5.0 6.0 REFERENCES 16 7.0

TABLES

Table 1 L	and Ownership
-----------	---------------

FIGURES

- Figure 1 Site Vicinity Map
- Operable Unit 1 Site Map Figure 2
- Figure 3 **Operable Unit 2 Site Map**
- Proposed CGA Boundary and Existing Private Wells Figure 4
- OU1 Estimated Extent of Source Soils Figure 5
- OU2 Estimated Extent of Source Soils Figure 6
- Monitoring Well and Surface Water Locations Figure 7
- Geologic Cross-Section Figure 8

APPENDICES

- Alluvial Aquifer Water Level Figures (TtEMI, 2003) Appendix A
- Calculated Fixed Radius Model for OU1 and Modeler's Resume Appendix B
- LSGPS Summary of OU2 CGA Buffer Zone Modeling and Modeler's Resume Appendix C
- Description of Proposed LSGPS CGA Boundary Appendix D

ACRONYMS AND ABBREVIATIONS

μg/L	Micrograms per liter
ARM	Administrative Rules of Montana
ATC	ATC Associates Inc.
ATSDR	Agency for Toxic Substances and Disease Registry
Beall	Beall Trailers of Montana, Inc.
bgs	Below ground surface
Cardno	Cardno ATC
CGA	Controlled groundwater area
<i>cis</i> -1,2-DCE	<i>cis</i> -1,2-Dichloroethene
COC	Contaminant of concern
DEQ	Montana Department of Environmental Quality
DNRC	Department of Natural Resources and Conservation
EPA	U.S. Environmental Protection Agency
ft/day	Feet per day
ft/ft	Feet per foot
ft/year	Feet per year
gpm	Gallons per minute
LSGPS	Lockwood Solvent Groundwater Plume Site
LWSD	Lockwood Water and Sewer District
MAROS	Monitoring and Remediation Optimization System
MCA	Montana Code Annotated
MCL	Maximum contaminant level
mg/kg	Milligrams per kilogram
OU1	Operable Unit 1
OU2	Operable Unit 2
PCE	Tetrachloroethene
RDA	Remedial Design Assessment
RI	Remedial Investigation
ROD	Record of Decision
Soco	Soco West, Inc.
TCE	Trichloroethene
TtEMI	Tetra Tech EM Inc.
VC	Vinyl chloride
VOC	Volatile organic compound

I

I

1.0 INTRODUCTION

This report presents supporting information for the petition to designate a permanent controlled groundwater area (CGA) for the Lockwood Solvent Groundwater Plume Site (LSGPS) located near Billings, Montana of Yellowstone County. This supporting documentation to the CGA petition has been prepared for RiverStone Health, Yellowstone County's public health agency, for submittal to the Montana Department of Natural Resources and Conservation (DNRC).

The LSGPS has been found to have chlorinated solvent contamination in soil and groundwater. The contaminants of concern (COCs) are tetrachloroethene (also known as perchloroethene or PCE), trichloroethene (TCE), *cis*-1,2-Dichloroethene (*cis*-1,2-DCE), and vinyl chloride (VC). Chlorinated solvents are a large family of chemical compounds that contain chlorine. They are used for a wide variety of commercial, residential and industrial purposes, including degreasers, cleaning solutions, paint thinners, pesticides, resins, glues, and a host of other mixing and thinning solutions. Their chlorine-containing chemical structure helps them to efficiently dissolve organic materials like fats and greases and to serve as raw materials or intermediates in the production of other chemicals. Exposure to chlorinated solvents can occur through inhalation, ingestion, and skin contact or skin absorption. Inhalation and ingestion are the most common forms of exposure, because the solvents can readily evaporate. PCE, TCE, *cis*-1,2-DCE and VC are known or are suspected to cause cancer, in both humans and animals.

Chlorinated solvents have been detected in alluvial groundwater samples at levels that exceed human health standards (also known as federal maximum contaminant levels drinking water standards¹) and require remediation. The permanent CGA for LSGPS is a remediation component specified in the Record of Decision (ROD [EPA/DEQ, 2005]) that is designed to protect human health. The CGA is being requested pursuant to Montana Code Annotated (MCA) 85-2-506(5)(c), (e) and (f) in order to prevent:

- Exposure to COCs in groundwater where the performance standards (cleanup levels), as specified in the ROD (EPA/DEQ, 2005), are exceeded; and
- Groundwater withdrawals from the CGA alluvial and bedrock aquifers that may induce or alter contaminant migration.

The performance standards specified in the ROD are the same values as the federal maximum contaminant levels (MCLs) and state of Montana DEQ-7 human health standards. Groundwater performance standards of 5 μ g/L for PCE and TCE, 70 μ g/L for *cis*-1,2-DCE, and 2 μ g/L for VC, will meet the performance standards identified as chemical specific Applicable or Relevant and Appropriate Requirements, as stated in the ROD (EPA/DEQ, 2005).

Because of the size of LSGPS and the need to delineate responsibility between two liable parties (Soco West and Beall Trailers), the LSGPS site consists of two operable units². Operable Unit 1 (OU1) is associated with impacts related to the former Beall Trailers, Inc. facility (Beall) and Operable Unit 2 (OU2) generally is associated with impacts related to Soco West, Inc. (Soco). The location and boundary of the LSGPS is shown on Figure 1. The location and boundaries of OU1 and OU2 are shown on Figures 2 and 3, respectively.

Tasman

¹ The Maximum Contaminant Levels (MCLs) are established by EPA. MCLs are the maximum concentration of a chemical that is allowed in public drinking water systems.

² During cleanup, a site can be divided into a number of distinct areas depending on the complexity of the problems associated with the site.

Based on current data, one lobe of the contaminated groundwater plume in OU1 is estimated to extend from the Beall property westward to the intersection of US Highway 87 and Lockwood Road, while the second lobe extends from the Beall Source Area to the northwest, crossing Interstate 90 and the Montana Rail Link railroad tracks, and comingles with the OU2 plume, north of Taylor Place (Figure 2). The contaminated groundwater plume in OU2 is contained within the area bounded by the Yellowstone River on the north and west, Klenck Lane on the east, and Taylor Place to the south (Figure 3).

Land use within and around the LSGPS is categorized as light industrial, commercial and residential. The commercial and light industrial facilities include trucking, vehicle repair, tank manufacturing, chemical repackaging, petroleum pipelines, machine shops and auto salvage. There are 81 commercial and light industrial businesses, and an estimated 75 residential single-family residences, two trailer parks, and one apartment complex located within the LSGPS boundary.

Although the ROD identified institutional controls as a remediation component to restrict domestic groundwater use, there are currently no administrative or institutional controls prohibiting the use of groundwater for domestic purposes within the LSGPS. Some of the commercial facilities have historically utilized groundwater for toilet and hand washing facilities as well as vehicle washing and other industrial uses (EPA/DEQ, 2005). Currently, all residences with wells that are impacted with contaminant concentrations above ROD performance standards and have used these wells for domestic purposes, have been provided with public water supply by the Lockwood Water and Sewer District.

1.1 CGA Description

The proposed permanent LSGPS CGA boundary is based on the current areal extent of COC impacts to groundwater exceeding MCLs and buffer zones encompassing the OU1 and OU2 contaminant plumes where significant withdrawals of groundwater may cause contaminant migration. The buffer zone will help ensure the plume does not expand through significant withdrawals of groundwater monitoring will evaluate the extent and concentration of COCs in groundwater until performance standards are met. The proposed boundary for the LSGPS CGA is shown on Figure 4. A discussion of how the buffer zone was developed is included in Section 4.3.

The proposed CGA encompasses approximately 336 acres, including all or portions of Sections 26 and 35, Township 01 North, Range 26 East. The following section provides a brief history of the site, and Section 2.0 presents site characteristics relevant to the CGA petition.

1.2 Site History

In June 1998, the Montana Department of Environmental Quality (DEQ) performed an integrated assessment focusing on the collection of samples upgradient of the Lockwood Water and Sewer District (LWSD) Treatment Plant wells and numerous petroleum release sites. Based on results from this study and subsequent sampling, the United States Environmental Protection Agency (EPA) and DEQ preliminarily identified Beall as a potential source for TCE and its chemical breakdown product of *cis*-1,2-DCE in the groundwater. Beall manufactured and repaired tanker truck trailers, primarily to transport asphalt. From 1978 to 1990, trailers were cleaned with a solution of dissolved TCE and steam prior to maintenance and/or repair. The wastewater from the steam clean bay was discharged to a septic system and drain field (EPA/DEQ, 2005).

After the June 1998 investigation, the DEQ immediately provided bottled water to residents whose wells contained groundwater contaminants exceeding or approaching MCLs (TtEMI, 2003). The DEQ tentatively identified 21 additional residential wells and 10 commercial wells that were affected by volatile organic compounds (VOCs); however, the well water from those locations were not used for potable use. Figure 4 shows the known private wells located within the proposed CGA.

A series of assessments, performed between 1998 and 1999, were conducted or overseen by DEQ to identify the source of VOC contamination in the Lomond Lane area (Figure 3). Data collected during these investigations identified a potential PCE source and its chemical breakdown products of TCE, *cis*-1,2-DCE, and VC in the groundwater on and downgradient of the Soco property (OU2). Under previous owners, operations began in 1972 at the Soco property, which historically was operated as a chemical re-packaging and distribution company. Historic releases of PCE and possibly TCE, as well as petroleum products such as toluene and other organic compounds, occurred on the Soco property (EPA/DEQ, 2005).

At the request of the DEQ (May 1999), the Agency for Toxic Substances and Disease Registry (ATSDR) completed a health consultation and determined there was a short-term exposure risk for people showering or bathing in the contaminated groundwater (ATSDR, 1999). The ATSDR recommended that residents be provided with alternative whole-house water within one year.

EPA proposed the LSGPS for placement on the National Priorities List in May 2000 and listed the LSGPS on December 1, 2000. The National Priorities List is the list of hazardous waste sites in the United States eligible for long-term remedial action (cleanup) financed under the federal Superfund program. During the summer of 2000, EPA's Emergency Removal Program extended the public water supply line to the Lomond Lane area and 14 residences with contaminated wells above MCLs were connected by August 2000 (TtEMI, 2003).

DEQ began the Remedial Investigation (RI) during the summer of 2002, which included surface and subsurface soil sampling, monitoring well construction and groundwater sampling, aquifer testing, and surface water and sediment sampling. In June 2003, DEQ released the Final Remedial Investigation Report which defined the nature and extent of the site contamination and risks. (TtEMI, 2003).

Baseline human health and ecological risk assessments were conducted as part of the RI following EPA guidelines. The Baseline Human Health Risk Assessment (TtEMI, 2003a) concluded the groundwater pathway poses significant risks to human health through ingestion, bathing, and routine industrial activities. Currently, all residences with wells that are impacted with contaminant concentrations above ROD performance standards have been provided the public water supply by the Lockwood Water and Sewer District (EPA/DEQ, 2005).

Using the RI results, EPA and DEQ evaluated potential remedial alternatives and a detailed analysis was presented in the Final Feasibility Study (TtEMI, 2004). The Proposed Cleanup Plan (Proposed Plan), issued by DEQ in November 2004 (DEQ, 2004), provided background information about LSGPS site conditions, human health risks, activities performed to date, and the preferred cleanup response actions. EPA and DEQ held a public meeting during the Proposed Plan public comment period and received comments and information on the Proposed Plan. In August 2005, DEQ and EPA released the ROD (EPA/DEQ, 2005), detailing DEQ's and EPA's final determination for the components of the Selected Remedy for cleanup at the LSGPS.

On October 3, 2011, a Remedial Design/Remedial Action Consent Decree for the Soco property was entered in United States District Court for the District of Montana (EPA/DEQ, 2011b). The

Tasman

Consent Decree and accompanying attachments outline the procedures, tasks, requirements, and schedule for the work to be performed at OU2 (EPA/DEQ, 2011b). As required by the Consent Decree, Soco is responsible for the development of all information (descriptions, data, modeling and rationale) necessary to support the petition for the CGA. Soco is required to provide the supporting information needed to allow EPA, DEQ and the Yellowstone City/County Health Department (dba RiverStone Health) to prepare a petition to the DNRC to establish a CGA under 85-2-5 MCA for the LSGPS.

Attempts were made by EPA to negotiate a Remedial Design/Remedial Action Consent Decree for the Beall property. However, Beall entered the bankruptcy process in 2012 and subsequently ceased operations at this location. The EPA is the lead for the remediation at the former Beall facility; working cooperatively with DEQ and the current tenants, MAC LTT.

SITE CHARACTERISTICS

2.0

2.1 Physical Setting

The LSGPS is located in south-central Montana, and is predominantly underlain by Cretaceous shale and sandstone deposited in an inland sea environment. The cliffs surrounding the Billings area and along the Yellowstone River are composed of Eagle Sandstone. These units, along with younger sedimentary deposits associated with the Yellowstone River floodplain, comprise the principal geologic units at the site.

2.2 Regional Geology

Alluvial and colluvial deposits within the greater Yellowstone floodplain consist of variable thickness of clay, silts, sand, and gravel. Alluvial deposits contain gravel of variable lithology derived from sources in the Yellowstone River drainage area while colluvial deposits are from locally derived bedrock sources, such as the Eagle Sandstone.

2.3 LSGPS Geology

The LSGPS is situated on Quaternary alluvium and alluvial terrace deposits. Upper Cretaceous Eagle Sandstone bedrock is exposed and present near the surface in the south portion of the LSGPS; however, most bedrock exposures are covered by colluvium deposits or have been buried by construction fill. The general contact between alluvium and bedrock follows the trace of the Lower Lockwood irrigation ditch from the Yellowstone River to the Beall property in OU1. This contact also marks the approximate extent of the shallow alluvial aquifer at the LSGPS. South of the Lower Lockwood Irrigation Ditch, bedrock is encountered at very shallow depths while north of the ditch alluvium in the upper alluvial terrace area averages 65 feet deep. Alluvium thickness in the lower terrace area averages approximately 40 feet. In the area of OU2, the alluvium is approximately 30 to 35 feet deep from the original ground surface. A geologic cross-section of the LSGPS, constructed from boring log information collected during RI drilling activities, shows the relationship between surface topography, shallow aquifer, alluvium thickness, groundwater flow, and bedrock (TtEMI, 2003). Figure 8 shows the map view location of the geologic cross-section (TtEMI, 2003).

2.4 Surface Water

Five surface water features are located within the proposed CGA: the Yellowstone River, the Coulson Irrigation Ditch (which has been out of service since approximately 2008), the AJ Gravel Pond, the Corcoran Pond and the Lower Lockwood Irrigation Ditch (EPA/DEQ, 2005). The surface water features are shown on Figure 7.

The Yellowstone River is the main surface water feature in the LSGPS, and the centerline of the channel marks the western and northern boundaries of the LSGPS. The river is approximately 4,600 feet downgradient of the Beall Source Area and 2,000 feet downgradient of the Soco Source Areas. The Yellowstone River is expected to intercept the alluvial groundwater discharging from the LSGPS (EPA/DEQ, 2005). As discussed in the ROD, a groundwater-surface water mixing model was used to evaluate the impact of contaminated groundwater on surface water quality of the Yellowstone River. The modeling indicated that discharge of contaminated groundwater has negligible impact to the Yellowstone River.

The Coulson Irrigation Ditch, which was formerly used to convey irrigation water, originates at a diversion structure on the Yellowstone River south (upriver) from the LWSD water treatment plant,

winds to the northeast, then passes along the north boundary of the Soco property. The ditch exits the LSGPS beneath Klenck Road and continues through open fields east of OU2. The bottom of the ditch intercepts the water table so groundwater influx or seepage may occur even though there is no flow. Comparisons of water elevation data in the Coulson Irrigation Ditch to water elevations in monitoring wells adjacent to the ditch indicate portions of the Coulson Irrigation Ditch are below the groundwater table (EPA/DEQ, 2005).

The AJ Gravel Pond and Corcoran Pond are located south of the Yellowstone River at the north end of OU2. The ponds are about 1,500 and 1,800 feet downgradient of the Soco property, respectively, and are the result of former sand and gravel mining activities. The water elevations in the ponds are a reflection of water table elevations (EPA/DEQ, 2005).

The Lower Lockwood Irrigation Ditch, located at the south end of OU1, does not interact with the groundwater at the LSGPS and does not affect the site (EPA/DEQ, 2005).

One additional surface water feature is located within the OU1 and OU2 boundaries, but outside of the proposed CGA boundary. A permanent wetlands area, with small open ponds, is located about 4,300 feet downgradient of the Beall property in the west portion of the LSGPS. The wetlands extend from east of Cerise Road northeast toward the Sandy-Lomond Lane area. The wetlands were formed in a former chute channel originating from the Yellowstone River and likely receive groundwater year-round (EPA/DEQ, 2005). The surface water features are shown on Figure 7.

2.5 Groundwater Recharge/Discharge

Recharge of groundwater to the alluvial aquifer at LSGPS is likely occurring though two processes: (1) infiltration from surface features, such as ditches, and precipitation on unpaved surfaces, and (2) groundwater flow from the bedrock at the upgradient alluvial aquifer boundary. Closer to the Yellowstone River, localized recharge to the aquifer is likely dominated by groundwater travelling through the Yellowstone Valley in alluvial sands and gravels. Although not quantified during the RI, net infiltration from the surface within the LSGPS is likely limited by the low net precipitation in the area, controlled stormwater runoff, and by paved cover and buildings. Recharge from the bedrock aquifer is likely occurring along most of the alluvial aquifer boundary with saturated bedrock. Groundwater recharge for the LSGPS is occurring in the bedrock hills to the south and southeast of the LSGPS. Groundwater from this area flows downgradient toward the Yellowstone River and enters the alluvial aquifer at the contact (alluvial aquifer boundary) with the bedrock aquifer (TtEMI, 2003). Irrigation water is supplied by both the Lower and Upper Lockwood Irrigation Ditches, which flow through moderately permeable sediments 40 to 50 feet above the water table and are likely losing water at variable rates along the length of the channels (TtEMI, 2003). The Coulson Ditch intercepts the static groundwater level, indicating that the ditch would lose water during irrigation season. However, the Coulson Ditch is not currently operated, limiting groundwater recharge from the ditch to occasions when the ditch conveys significant amounts of stormwater runoff from roadside ditches and the railroad right-of-way. Ephemeral drainages and roadside ditches may also contribute to localized recharge, but these surface conveyances flow intermittently, and are often interconnected, e.g. unnamed drainages discharge to the Lower Lockwood Irrigation Ditch from the southeast (TtEMI, 2003).

2.6 Groundwater Flow

Previous investigations documented aspects of the groundwater flow regime in the vicinity of the LSGPS. Ongoing mitigation efforts (Section 6) include groundwater gauging and sampling to monitor the status of each plume. However, the monitoring well networks included in the current monitoring programs for OU1 and OU2 are significantly smaller (i.e. fewer wells) than the LSGPS site-wide network used for the 2003 RI to evaluate groundwater flow. The network of monitoring wells has been reduced over time as the data indicates stability in groundwater flow and COC concentration levels. For this CGA petition, the more spatially encompassing RI data provides a more comprehensive overview of groundwater conditions at the LSGPS. A comparison of data collected during the RI to recently collected data from the same wells indicates that no significant differences in COC concentrations exist between the data sets. Thus, contamination in the groundwater has reached equilibrium and is likely to see further reductions once cleanup commences.

In general, existing data suggest that the shallow, sandy gravel aquifer is the preferential pathway for migration of contaminants. Additionally, sorption of COCs to the silty clay and silty sand unit could provide a long-term source of contamination to groundwater because of back or matrix diffusion for many years after cleanup of the source areas has been completed. The lower-permeability bedrock unit likely impedes downward vertical groundwater flow and contaminant migration. The predominant groundwater flow direction is northwest toward the Yellowstone River. Depth to groundwater is approximately 9.5 to 14 feet below ground surface (bgs) near the river up to Taylor Place (Cardno, 2015). The water table in the Beall Source Area is at approximately 42 feet bgs (EPA, 2014a).

The general groundwater gradient across the LSGPS is toward the northwest, with localized variations, including a more northerly flow component near the Beall Source Area, and a westerly flow component near the southern boundary of the site. The overall site gradient has been measured at 0.009 feet/foot (ft/ft), with a lower gradient in the OU1 plume (0.0052 ft/ft) compared to the gradient in the OU2 plume (0.006 ft/ft) (TtEMI, 2003). Water level gradient maps from the 2003 RI are included in Appendix A. Due to the delineation of responsibility between liable parties for OU1 and OU2, groundwater level measurements are not collected from both operable units at the same time; therefore, a more recent potentiometric surface map is not available.

Estimates of hydraulic conductivity vary between the two Operable Units, due to differences in the alluvial sediment underlying the two source areas. In OU1, the medium coarse-grained sediments have an estimated hydraulic conductivity of 1.63 feet per day (ft/day), resulting in a calculated groundwater flow velocity of approximately 13 feet per year (ft/year). This estimate was based on an average hydraulic gradient of 0.0059 ft/ft, and an effective porosity of 0.27. In the lower alluvial terrace of OU2, the hydraulic conductivity was estimated at 70 ft/day, representative of coarse-grained sediments. Based on this average hydraulic conductivity, a hydraulic gradient of 0.006 ft/ft, and an effective porosity of 0.27, the calculated groundwater flow velocity for the OU2 area is 558 ft/year (TtEMI, 2003).

The boundary of the proposed CGA accounts for these differences in the flow regimes affecting the OU1 and OU2 plumes, as well as differences in the source areas and plumes discussed in the following sections.

2.7 Source Areas

Concentrations of the COCs in groundwater can be compared to the performance standards of 5.0 µg/L for PCE and TCE, 70 µg/L for *cis*-1,2-DCE and 2.0 µg/L for VC, as specified in the ROD

Tasman

(EPA/DEQ, 2005). Soil contamination is a concern as the contaminants continue to leach from the soil to the groundwater, causing the groundwater contamination. Modeling performed for the Remedial Investigation (TtEMI, 2003) produced cleanup values for the contaminants in soil for the protection of the groundwater. The site-specific cleanup levels for these contaminants in soil will prevent or minimize further migration of contaminants from soil to groundwater and protect groundwater cleanup goals (EPA/DEQ, 2005).

The differences between the OU1 and OU2 source areas was considered significant enough to establish separate soil cleanup levels for each area. For OU1, concentrations of the COCs in soil can be compared to the soil performance standards of 0.22 milligrams per kilogram (mg/kg) for PCE, 0.24 mg/kg for TCE, 1.64 mg/kg for *cis*-1,2-DCE and 0.05 mg/kg for VC, as specified in the ROD (EPA/DEQ, 2005). For OU2, the ROD specified COC concentrations in soil can be compared to the performance standards of 0.65 mg/kg for PCE, 0.72 mg/kg for TCE, 4.90 mg/kg for *cis*-1,2-DCE and 0.16 mg/kg for VC. These site-specific soil cleanup levels are based on COC contaminants leaching to groundwater and establish estimated vadose soil contaminant concentrations that would ensure that groundwater performance standards are not exceeded (EPA/DEQ, 2005).

2.7.1 Operable Unit 1 (OU1)

Previous investigations of OU1 indicate the source area of COC impacts is around the former steam-cleaning bay drainfield and oil-water separator piping on the Beall property (Figure 5). In 2002, maximum concentrations of TCE in groundwater at wells located closest to the Beall Source Area were 1,867 and 1,850 micrograms per liter (μ g/L). Soil samples collected in the unsaturated zone around the drain at the center of the steam-cleaning bay have exhibited TCE concentrations up to 120 mg/kg in the interval from 5.0 to 12.2 feet bgs and up to 11 mg/kg in the interval from 33.0 to 41.5 feet bgs (EPA, 2014a).

Groundwater contamination at OU1 occurs in two lobes as shown on Figure 2:

- A western lobe (West Lobe) most likely the result of historical groundwater flow to the west caused by the hydraulic influences of a former LWSD water supply well (closed in 1986); and
- A northern lobe (North Lobe) that is consistent with the natural groundwater flow directions (EPA, 2014a).

2.7.2 Operable Unit 2 (OU2)

Based on investigations conducted to date, several source areas of COC impacts have been identified on and near the Soco property in OU2. There are two primary source areas 1) the northwest source area and 2) the former tank farm source area, as shown on Figure 6. COC impacts identified in OU2 soil range as high as 4,670 mg/kg for PCE, 129 mg/kg for TCE, 50 mg/kg for *cis*-1,2-DCE, and 1.7 mg/kg for VC. The COC impacts to soil source a groundwater plume that flows northwest from the Soco property. Downgradient of the Soco property, the axis of the plume shifts to a more northerly direction, and the plume ultimately discharges into the Yellowstone River. Dissolved COC concentrations detected in groundwater within the OU2 plume have historically been as high as 120,000 µg/L for PCE, 1,020 µg/L for TCE, 18,700 µg/L for *cis*-1,2-DCE, and 2,460 µg/L for VC.

During the summer of 2015, an ozone sparge system was installed to evaluate the treatment of COCs in impacted groundwater within the northwest source area at the Soco property in OU2.

The ozone sparge system, operated in conjunction with a vapor recovery system, is designed to function as a barrier and treat inaccessible vadose zone soils in the source area. Contaminated groundwater passing through the system is currently being treated to reduce VOC concentrations. Ozone sparge/vapor recovery remediation was selected based on the demonstrated success of previous treatability testing activities and the high permeability of the sandy-gravel aquifer at OU2.

2.8 Plumes & Plume Status

The current status of the plumes from the OU1 and OU2 source areas determines, in part, the boundary of the proposed CGA and proposed restrictions on groundwater use. Plume status has been evaluated during optimization reviews conducted by the EPA Office of Superfund Remediation and Technology Innovation at the request of the Region 8 Remedial Project Manager (EPA, 2014a and 2014b). Total dissolved mass estimates of the plume conducted using Monitoring and Remediation Optimization System (MAROS) modelling during the 2014 remedy optimization indicate largely stable values, indicating that mass discharge from the source is balanced by mass discharge to surface water and natural attenuation mechanisms. Further information from these reports regarding plume status is included in the following paragraphs. Monitoring well locations for the LSGPS are shown on Figure 7.

Groundwater monitoring was conducted at OU1 on an annual or semi-annual basis from 2002 through 2014. TCE concentrations above the MCL are present in both plume lobes (West and North), and are present above laboratory detection limits, but below ROD performance standards at locations between the lobes. Statistical trend analyses of COC concentrations in Beall Source Area wells indicates the West Lobe plume is stable with fairly elevated concentrations near the source. Individual well concentration trends in the West Lobe are stable to decreasing and estimates of total dissolved mass and center of mass are also stable, indicating the West Lobe are largely stable to decreasing, as are estimates of the total dissolved mass and center of mass for the plume (EPA, 2014a).

A source of uncertainty for delineating the proposed CGA is the effect of variability in groundwater flow direction on the shape of the plumes in OU1. A westerly component of groundwater flow appears to remain even after termination of pumping at the municipal supply well to the west of the Beall Source Area. The groundwater gradients across OU1 appears to have a stronger northerly component, but is fairly flat, so small differences in local gradient may impact the geometry of the plume. The long-term presence of a northward flow component of the West Lobe could cause residual contamination to migrate north (for example, from monitoring well MW212 to MW213; Figure 7) into the area between the West and North Lobes (EPA, 2014a).

Groundwater in the OU2 area has been monitored via sampling and analysis of up to 48 wells and piezometers between 1998 and 2016. The highest dissolved contaminant concentrations were detected from wells installed to monitor the ozone sparging/soil vapor extraction system pilot test in the northwest source area (Figure 6). For the time period of 2000 to 2016, wells PT-02, PT-05 and PT-06 (Figure 7), located in the northwest source area, show stable to decreasing concentration trends for PCE (Note: PT wells were not sampled from 2004 to 2011).

A groundwater plume in the alluvial aquifer extends to the northwest from the Soco Source Areas, ultimately discharging to the Yellowstone River approximately 2,000 feet downgradient of the Soco Source Areas (Figure 7).

3.0 CGA PETITION CRITERIA

The DNRC can designate a permanent CGA by rule if one or more of the criteria specified in Section 85-2-506 MCA are met. The following criteria apply to the LSGPS CGA petition:

- Current or projected groundwater withdrawals from the aquifer or aquifers in the proposed CGA have induced or altered or will induce or alter contaminant migration exceeding relevant water quality standards (Section 85-2-506 (5)(c)) MCA; and
- Groundwater within the proposed CGA is not suited for beneficial use; or public health, safety, or welfare is or will become at risk (Section 85-2-506 (5)(e) and (f)) MCA.

Development of new pumping wells adjacent to and/or downgradient of the groundwater plumes has the potential to lower groundwater levels, alter groundwater flow patterns, and cause the groundwater plumes and associated contaminants to migrate into currently unaffected areas. Historic information supports this scenario – the West Lobe plume in OU1 is most likely the result of historical hydraulic influences of a former LWSD water supply well. There was also a slight modification in groundwater flow patterns near the Yellowstone River when the gravel pit was operational. AJ Gravel ceased operations in the early 2000's.

Furthermore, dewatering activities during construction of a LSWD sewer line along Taylor Place in 2012 also demonstrated the ability of pumping to cause plume migration within OU2. Based on changes in COC concentrations observed from groundwater sampling conducted during the dewatering activities, the EPA requested that the dewatering contractor cease pumping. This potential indicates that the criteria presented in Section 85-2-506 (5)(c) MCA should be considered in the designation process.

Based on extensive groundwater sampling and monitoring over the past two decades, COC impacts continue to exceed the ROD performance standards in the LSGPS. Concentrations of the COCs in groundwater can be compared to the performance standards of 5.0 µg/L for PCE and TCE, 70 µg/L for *cis*-1,2-DCE and 2.0 µg/L for VC, as specified in the ROD (EPA/DEQ, 2005). This data shows groundwater quality in the LSGPS is not suitable for beneficial use; or public health, safety, or welfare is or will become at risk. Historic analytical results are available through the EPA Superfund Records Center Montana Office in Helena or Montana State University – Billings Library.

Based on the above information, groundwater quality north and west of the former Beall property, and northwest of the Soco property, is not suitable for all intended beneficial uses and exceeds ROD performance standards, meeting the CGA petitioning criteria listed in Section 85-2-506 (5)(c), (5)(e), and 5(f) MCA.

Tasman

4.0 CGA BOUNDARY AND PROPERTY OWNERSHIP

The Lockwood CGA boundary is based on the horizontal and vertical extents of contaminants in the groundwater plumes, potential future changes in groundwater flow patterns, and projected plume stability. The boundary is intended to meet CGA objectives of preventing unacceptable exposure to groundwater-borne contaminants or spreading of the groundwater plumes due to groundwater pumping, while minimizing the impacts of groundwater usage restrictions on property owners to the extent practicable.

The proposed boundary for the LSGPS CGA is located near the outskirts of Billings, in Yellowstone County, Montana, as shown on Figure 4. The CGA includes portions of Sections 26 and 35 in Township 01 North, Range 26 East. A description of the LSGPS CGA boundary is included in Appendix D.

4.1 Permanent CGA Boundary

The proposed permanent CGA encompasses approximately 336 acres in area, which includes those areas with or PCE (OU2) or TCE (OU1) and their corresponding breakdown product concentrations that exceed MCLs due to conditions at the Soco and former Beall properties. The proposed CGA also includes those areas in the vicinity of the groundwater plumes where, based on currently available data, concentrations are below MCLs, but future commercial or industrial development could include completion of non-exempt (greater than 35 gallons per minute [gpm]) water supply wells. The permanent CGA is intended to account for possible near-term changes in groundwater flow directions and plume migration patterns, and uncertainty in the precise contaminant boundary locations and to address areas where higher groundwater pumping rates could cause plumes to migrate into currently un-impacted areas, or where other changes in the hydrologic system could cause changes in the groundwater plume migration patterns in the future.

4.2 Vertical Boundary

The proposed LSGPS CGA includes the vertical boundary of the alluvial and bedrock aquifers. The vertical boundary is defined for the permanent CGA to meet the CGA objective of preventing vertical migration of contaminant plumes into the bedrock aquifer. A confining layer separates the alluvial aquifer from lower aquifers. The confining layer that exists between the alluvial aquifer and lower aquifers has been shown to prevent vertical movement of the plumes.

Two sets of alluvial/bedrock paired monitoring wells were installed in 2002 and sampled for several years. There are only two known exceedances of TCE concentrations in groundwater in the bedrock aquifer above MCLs. The exceedances occurred in 2002 and 2004 in samples collected from bedrock well MW219 (Figure 7), located in OU1, with no known exceedances since. There have been no known exceedances in the bedrock aquifer in OU2.

The depth to the saturated zone varies from ten feet or less north of the Soco property (OU2) near the Coulson Ditch, to approximately 40 feet or more on the former Beall property (OU1). Depth to bedrock within the LSGPS varies from less than 10 feet near the Yellowstone River to greater than 65 feet southeast of Interstate Highway 90 in the vicinity of Beall (OU1).

Tesman

4.3 Basis for CGA Boundary

The proposed boundary for the LSGPS CGA is based on the delineation of COCs in the OU1 and OU2 groundwater plumes, and analysis of the designation criteria in Section 85-2-506 MCA. Other factors considered in defining the boundary include information on groundwater flow and contaminant transport processes, and potential affects to the area hydrology from development of new wells.

The boundary accounts for the potential for groundwater pumping to alter plume extents, causing contaminant migration into areas not currently affected by the plumes.

- In OU1, Calculated Fixed Radius calculations were used to estimate the capture zone radius, or lateral distance that a pumping well will draw water. The modeled scenario used a residential water supply well pumping at the maximum allowable rate of 35 gpm or an annual total volume of 10 acre-ft/year (equivalent to pumping 6.2 gpm continuously for one year). A second simulation was run using a non-exempt well pumping at 100 gpm continuously for one year. The model results show that new residential wells should not be located within 150 feet of the OU1 plume, and non-exempt wells should not be located within 600 feet of the plume. This approach is appropriate for the lower hydraulic conductivity (1.63 ft/day) and calculated groundwater flow velocity (13 ft/year) associated with the medium coarse-grained aquifer materials in OU1. The Calculated Fixed Radius Model for OU1 is included in Appendix B.
- In OU2, the USGS MODFLOW and MODPATH flow and particle transport models were used to simulate residential withdrawals (35 gpm maximum) adjacent to the Soco plume. Two pumping wells were placed on each side of the plume in the model to be conservative. A conservative hydraulic conductivity of 230 ft/day was used, consistent with more coarse-grained aquifer materials in OU2, while recognizing that heterogeneity in the soil profile has led to hydraulic conductivity estimates ranging from 70 ft/day to 624 ft/day. The model was run until steady-state conditions were achieved. Under these conditions, wells could be installed on the proposed CGA boundary and pumped 35 gpm until steady-state conditions were achieved and, according to the model output, the plume would never reach the pumping wells. Model results indicate that residential wells should not be located within 650 feet of the plume in the southern portion of OU2. This buffer zone has been extended downgradient to the Yellowstone River and upgradient to encompass the North Lobe of the OU1 plume. The OU2 CGA Buffer Zone Modeling is included in Appendix C.

4.4 Property Ownership

Table 1 lists property ownership within the LSGPS CGA boundary. Properties within the CGA consists of 208 parcels, which include numerous business and residential properties.

5.0 PROPOSED GROUNDWATER USAGE RESTRICTIONS

The following groundwater usage restrictions are proposed for the LSGPS CGA to prevent exposure to COCs in potable water and to prevent groundwater withdrawals from the CGA aquifer that may cause, induce, or alter contaminant migration. Groundwater usage restrictions within the proposed LSGPS CGA would include:

- A complete moratorium on all new water supply wells, including but not limited to: private, community or municipal water supply wells, irrigation wells and industrial use wells. These restrictions would apply within the lateral boundaries of the LSGPS CGA, which is shown on Figure 4.
- Groundwater monitoring wells, test wells and remediation wells will be allowed within the LSGPS CGA.
- Replacement wells will be allowed within the LSGPS CGA, as long as the original well
 was within the CGA and the property owner, where the well resides, has a water right filed
 with DNRC.
- No change of purpose will be allowed for any existing or replacement well within the LSGPS CGA boundary.

14

6.0 MITIGATION OF APPLICABLE PETITIONING CRITERIA AND MONITORING

As detailed in the referenced documents, assessment, remedial design, and treatability-test work has been completed to date to reduce environmental impacts within OU1 and OU2, with additional remedial actions being implemented and/or planned in the near future to address groundwater and soil contamination. Site remediation at both operable units is currently being addressed under the Superfund program, as mandated by the 2005 LSGPS ROD (EPA/DEQ, 2005). The Remedial Design (RD) process is underway, with the goal of addressing contamination associated with the Beall Source Area (OU1) and the Soco Source Area (OU2). Various remedial actions are currently being evaluated for effectiveness at controlling contaminant sources and meeting remedy performance standards, which include achieving appropriate media cleanup standards in groundwater and soil, as well as reducing ongoing contaminant loading to groundwater from the source areas, to the extent practicable.

The proposed permanent CGA is critical component of the remedy presented in the 2005 LSGPS ROD. Its purpose as an institutional control is to prevent unacceptable exposure to contaminated groundwater and/or potential contaminant migration resulting from additional groundwater withdrawals, while the selected remedies are being implemented and before the performance standards specified in the ROD are met. Given the presence of persistent contaminant source materials on the Soco and former Beall properties, the remedy performance phase of the project is expected to extend for a number of years. Groundwater monitoring will continue in the coming years to assess the effectiveness of remedial activities on the contaminant sources and downgradient groundwater quality, and to evaluate the need for additional remedies and/or modifications to the CGA boundary and/or provisions. Groundwater monitoring will evaluate the extent and concentration of COCs in groundwater until performance standards are met. The proposed boundary for the LSGPS CGA is shown on Figure 4.

7.0 REFERENCES

- ATC, 2003. Ozone Sparging/Soil Vapor Extraction Basis of Design Brenntag West, ATC Associates Inc., Billings, Montana, December 4.
- ATSDR, 1999. "Health Consultation Lockwood Solvents, Billings, Yellowstone County, Montana." Division of Health Assessment and Consultation.
- Cardno, 2015. 2014 Annual Groundwater Monitoring Report, Operable Unit 2, Lockwood Solvent Groundwater Plume Site, Cardno ATC, Billings, Montana, March 31.
- DEQ, 2004. Proposed Remedial Action Plan, Lockwood Solvent Groundwater Plume Site, Montana Department of Environmental Quality, Helena, Montana, November.
- EPA, 2014a. Optimization Review, Lockwood Operable Unit 1 Beall Source Area, Billings, Montana, Office of Solid Waste and Emergency Response Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, DC, EPA 542-R-14-009, September 19.
- EPA, 2014b. Optimization Review, Lockwood Operable Unit 2 Soco/Brenntag Source Area, Billings, Montana, Office of Solid Waste and Emergency Response Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, DC, EPA 542-R-14-010, September 19.
- EPA/DEQ, 2011a. Statement of Work for Remedial Design and Remedial Action in Operable Unit 2 at the Lockwood Solvent Ground Water Plume Superfund Site, U.S. Environmental Protection Agency, Helena, Montana, and Montana Department of Environmental Quality, Helena, Montana, June.
- EPA/DEQ, 2011b. Remedial Design/Remedial Action Consent Decree, Operable Unit 2, Lockwood Solvent Ground Water Plume Superfund Site. U.S. Environmental Protection Agency, Helena, Montana, and Montana Department of Environmental Quality, Helena, Montana, October 3.
- EPA/DEQ, 2005. Record of Decision, Lockwood Solvent Groundwater Plume Site, U.S. Environmental Protection Agency, Helena, Montana, and Montana Department of Environmental Quality, Helena, Montana, August.
- Parsons Corporation, 2004. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents. Prepared for: Air Force Center for Environmental Excellence, Naval Facilities Engineering Service Center, and Environmental Security Technology Certification Program, Parsons Corporation, Denver, CO, August.
- TtEMI, 2004. Final Feasibility Study Report, Lockwood Solvent Groundwater Plume Site. Tetra Tech EM, Inc., Helena, Montana, July 6.
- TtEMI, 2003. Remedial Investigation Report, Lockwood Solvent Groundwater Plume Site, Tetra Tech EM, Inc., Helena, Montana, June.
- Wiedemeier, T.H., H.S. Rifai, C.J. Newell, and J.T. Wilson, 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface, John Wiley & Sons, New York, NY.

Tasman

TABLES

I

I

1

TABLE 1 LAND OWNERSHIP CONTROLLED GROUNDWATER AREA LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

PARCEL ID	PROPERTY ADDRESS	OWNER NAME	OWNER ADDRESS				
03103335119059029	1385 US HIGHWAY 87 E	BUTCHER, ANDREW & ROSS	PO Box 317		LEWISTOWN	IMT	59457-2703
				1385 US HIGHWAY 87 E			
03103335119059030	1385 US HIGHWAY 87 E	VANDERVOORT, MARK	MAIL TO: PRICE, TIFFANY	FANY TRLR 30		MT	59101-6644
03103335119059030	1385 US HIGHWAY 87 E	FROST, KIMBERLY DAWN	1385 US HIGHWAY 87 E TRLR 32		BILLINGS	MT	59101-6644
03103335119059030	1385 US HIGHWAY 87 E	PARISH, MIKE &	1385 US HIGHWAY 87 E TRLR 34		BILLINGS	MT	59101-6645
03103335119059030	1385 US HIGHWAY 87 E	RANDALL, LUTHER F	1385 US HIGHWAY 87 E TRLR 35		BILLINGS	MT	59101-6645
03103335119059030	1385 US HIGHWAY 87 E	KOCSIS, LINDA	1385 US HIGHWAY 87 E TRLR 28B		BILLINGS	MT	59101-6645
			MAIL TO: FORSTNER, GEORGE C /	1385 US HIGHWAY 87 E			T
03103335119059037	1385 US HIGHWAY 87 E	HUDSON, JAMES	FROSTNER, SHANNON L	TRLR 37	BILLINGS	MT	59101-6645
03103335120010000	4008 MELODY LN	HOUSE, RAY E & RUTH A	4008 MELODY LN		BILLINGS	MT	59101-6513
03103335120020000	1330 BAXTER RD	WILSON, DARRYL	PO Box 50302		BILLINGS	MT	59105-2658
03103335119059000	1385 US HIGHWAY 87 E	MYERS, RICHARD LEE	2932 ALASKAN AVE		BILLINGS	MT	59101-6824
03103335119059010	1385 US HIGHWAY 87 E	HIXSON, NADINE T &	1385 US HIGHWAY 87 E TRLR 10		BILLINGS	MT	59101-6643
03103335119059011	1385 US HIGHWAY 87 E	HOFLIN, BRITTNEY	1385 US HIGHWAY 87 E TRLR 11		BILLINGS	MT	59101-6643
03103335119059012	1385 US HIGHWAY 87 E	HOFFMAN, CRAIG THOMAS	1385 US HIGHWAY 87 E #12		BILLINGS	MT	59101
03103335119059013	1385 US HIGHWAY 87 E	LARSON, BRENDON	2355 SHADOW CANYON RD		HUNTLEY	MT	59037-9321
03103335119059014	1385 US HIGHWAY 87 E	WATERS, LYNELLE A	1385 US HIGHWAY 87 E TRLR 14		BILLINGS	MT	59101-6643
				1385 US HIGHWAY 87 E			
03103335119059015	1385 US HIGHWAY 87 E	NESS, ORIN EVANS	MAIL TO: TEMPLET, DARYL	TRLR 15	BILLINGS	MT	59101-6643
03103335119059020	1385 US HIGHWAY 87 E	PARRISH, MICHAEL JAY &	1385 US HIGHWAY 87 E TRLR 34		BILLINGS	MT	59101-6645
03103335119059020	1385 US HIGHWAY 87 E	IREYNOLDS, LAURA BETH do WATSON, ROY	821 N 271H ST # 276		BILLINGS	MT	59101-1121
03103335119059024	1385 US HIGHWAY 87 E	JMCDONALD, DONALD R JR & LAURIE A	1385 US HIGHWAY 87 E TRLR 24	100511011011010101010	BILLINGS	MT	59101-6644
00400005440050007	1005 LIC HICLINARY 07 F	DAY MOVE	MALL TO: OUNTA LAND	1385 US HIGHWAY 87 E	51111100		
03103335119059027	1365 US HIGHWAY 87 E	RAY, JACKIE	MAIL TO: SILVA, IAN	TRLR 27	BILLINGS	IMI	59101-6644
00400005440050000	1005 110 110 104 14 10 2 5		MAN TO MADEE MEATHER	1385 US HIGHWAY 87 E			
03103335119059028	1385 US HIGHWAY 87 E	HOLLET, JAN & PAUL	MAIL TU: MCGEE, HEATHER	TRLR 28A	BILLINGS	MI	59101-6644
03103335120030000	4040 MELODY IN	NELSON, DAVID A	4010 MELODY LN		BILLINGS	MI	59101-6513
03103335120040000	4010 MELODY LN	INADVEN JOUNATION & ASULEY	4010 MELODY LN	-	BILLINGS	MI	59101-6513
03103335120050000	36 MELODY LN	FARMED TAMADA I	PO BUX 50303		BILLINGS	MI	59105-0303
03103335120060000		EPEY COLEM			BILLINGS	MI	59101-6513
03103335120090000	4012 MELODI EN				BILLINGS	IVI I	109101-6043
03103335120100000	1425 LIS HIGHWAY 87 E	CAL PROPERTIES ILC	4014 DAATER LIN		DILLINGS	IVI I	59101-6538
03103335120110000	1420 US HIGHWAY 87 E	SECTOR CORPORATION	PO POY 17005		DILLINGS	IVII	07047 0005
03103335122020000	124 CHERRY ST	TREETZ ELIGENE E	124 CHERRY ST		PULLINCS	MAT	60101 6611
03103335122020000	114 CHERRY ST	GRANTHAM KIRK & & DIANNA E	114 CHEDDV ST		DILLINGS	IVI I	59101-0511
03103335122030000	114 CHERRY ST	GRANTHAM KIRK & & DIANNA F	114 CHERRY ST		BILLINGS	MT	59101-0011
03103335122050000	110 CHERRY ST	SCHMIDT CLARICE E	110 CHERRY ST		BILLINGS	MT	59101-6511
03103335122060000	106 CHERRY ST	PICKETT JOHN SJR & CLAUDINE	24 MAIER RD		BILLINGS	MT	59101-0511
03103335123010000	48 MAIER RD	FRAKER-FOX SHAWNA M	48 MAIER RD		BILLINGS	MT	50101-6515
	1			1	DIEEINOO	11411	00101-0010
03103335123020000	30 MAIER RD	CROSS ROADS FREE WILL BAPTIST CHRCH	30 MAIER RD		BILLINGS	MT	159101-6515
03103335123030000	24 MAIER RD	PICKETT, JOHN S & CLAUDINE	24 MAIER RD		BILLINGS	MT	59101-6515
03103335123040000	16 MAIER RD	SEWARD, JAMES & MANA	18 MAIER RD		BILLINGS	MT	59101-6515
03103335123070000	1534 US HIGHWAY 87 E	MILLER, ERIC A	1534 US HIGHWAY 87 E		BILLINGS	MT	59101-6653
03103335203010000		MONTANA RAIL LINK	PO BOX 16624		MISSOULA	MT	59808-6624
03103335204010000	1031 US HIGHWAY 87 E	STOCKTON, DANIEL E JR	1604 4TH AVE N		BILLINGS	MT	59101-1521
03103335110010000	151 ROSEBUD LN	CHS INC	ATTN: PROPERTY TAX	PO BOX 64089	SAINT PAUL	MN	55164-0089
03103335111020000	1224 87 HWY E	HINMAN, RICK H & KAREN	PO BOX 50242		BILLINGS	MT	59105-0242
03103335111030000	1247 ROSEBUD LN	STEINER, RICK EDWARD &	1247 ROSEBUD LN		BILLINGS	MT	59101-6528
03103335111050000		STEINER, RICK EDWARD	1247 ROSEBUD LN		BILLINGS	MT	59101-6528
03103335112010000	1301 ROSEBUD LN	WONDER, JOSEPH P & BOBBI J	1301 ROSEBUD LN		BILLINGS	MT	59101-6527
03103335112020000		WOOTON, ROBERT W & SHARON J	1213 STEFFANICH DR		BILLINGS	MT	59105-2650
03103335112030000	POLEN ST	GALVIN, BRUCE	1330 OLD HARDIN RD		BILLINGS	MT	59101-6654
03103335112080000	ROSEBUD LN	AFFRODABLE CONSTRUCTION EQU. LLC	PO BOX 430		BIG TIMBER	MT	59011-0430
03103335113010000	1330 OLD HARDIN RD	GALVIN, BRUCE F	1330 HWY 87 E		BILLINGS	MT	59101
03103335113040000		PONDEROSA REALTY LLC	1530 CEDAR ST STE D		HELENA	MT	59601-1007

TABLE 1 (CONTINUED) LAND OWNERSHIP CONTROLLED GROUNDWATER AREA LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

PARCELID	PROPERTY ADDRESS	OWNER NAME	OWNER ADDRESS					
03103335113050000	1319 ROSEBUD LN	PONDEROSA REALTY LLC	1530 CEDAR ST STE D		HELENA	MT	59601-1007	
03103335113060000	1341 ROSEBUD LN	PONDEROSA REALTY LLC	1530 CEDAR ST STE D		HELENA	MT	59601-1007	
03103335113090000		PONDEROSA REALTY LLC	1531 CEDAR ST STE D		HELENA	MT	59601-1007	
03103335113100000		PONDEROSA REALTY LLC	1532 CEDAR ST STE D		HELENA	MT	59601-1008	
						-		
		HARVEST EVANGELICAL CHURCH OF THE						
03103335114010000	1413 ROSEBUD LN	EVANGELICAL CHURCH OF NORTH AMERICA	1235 WICKS LN W		BILLINGS	MT	59105-3584	
03103335114020000	1429 ROSEBUD LN	MCCARTHY, MICHAEL S & DARCY K	1419 ROSEBUD LN		BILLINGS	MT	59101-6526	
03103335114030000	1439 ROSEBUD LN	CL ROSEBUD PROPERTIES LLC	635 CENTRAL AVE		BILLINGS	MT	59102-5814	
03103335114050000		CL ROSEBUD PROPERTIES LLC	635 CENTRAL AVE		BILLINGS	MT	59102-5814	
03103335115010000	1503 ROSEBUD LN	COCHRAN, LEONARD	1503 ROSEBUD LN		BILLINGS	MT	59101-6525	
03103335115200000	150 CHERRY ST	KINDSFATHER, RONALD	1509 ROSEBUD LN		BILLINGS	MT	59101-6525	
03103335116010000		VETTER, KARL CLAY	PO BOX 644		TULAROSA	NM	88352-0644	
03103335116020000		VETTER, KARL CLAY	PO BOX 644		TULAROSA	NM	88352-0644	
03103335117010000		POTTS, GLENN A & MICKEY J	1249 US HIGHWAY 87 E		BILLINGS	MT	59101-6655	
03103335117020000	1249 US HIGHWAY 87 E	POTTS, GLENN A & MICKEY J	1249 US HIGHWAY 87 E		BILLINGS	MT	59101-6655	
03103335118010000	1305 US HIGHWAY 87 E	KEEHN, ROBERT T & TAMARA J	1305 US HIGHWAY 87 E		BILLINGS	MT	59101-6654	
03103335119010000		NELSON, MARVIN L	8252 OVERLOOK LN		BOZEMAN	MT	59715-7795	
03103335119020000		DONNES FAMILY LLC (1/2 INT) &	5807 FREY RD		SHEPHERD	MT	59079-4459	
03103335119050000	1835 US HIGHWAY 87 E	ERIS, LLC	PO BOX 1086		BELLEVUE	WA	98009-1086	
03103335119059001	1385 US HIGHWAY 87 E	RULAND, L C	1385 HWY 87 E #1		BILLINGS	MT	59101-5216	
03103335119059002	1385 US HIGHWAY 87 E	HEDERT, FRANCIS	1385 US HIGHWAY 87 E TRLR 2		BILLINGS	MT	59101-6643	
03103335119059003	1385 US HIGHWAY 87 E	DEPRIEST, DUSTIN &	1385 US HIGHWAY 87 E TRLR 3		BILLINGS	MT	59101-6643	
03103335119059000	1385 US HIGHWAY 87 E	CURETON, CORTNEY	1385 US HIGHWAY 87 E TRLR 4		BILLINGS	MT	59101-6643	
03103335119059006	1385 US HIGHWAY 87 E	ERIS LLC	PO BOX 1086		BELLEVUE	WA	98009-1086	
03103335119059007	1385 US HIGHWAY 87 E	MAUCH, EVAN	1385 US HIGHWAY 87 E TRLR 7		BILLINGS	MT	59101-6643	
03103335119059008	1385 US HIGHWAY 87 E	ROBISON, BARBARA M	1385 US HIGHWAY 87 E TRLR 8		BILLINGS	MT	59101-6643	
03103335123140000	34 MAIER RD	PALMER, RONALD A & ARLEE L	34 MAIER RD		BILLINGS	MT	59101-6515	
03103335123200000	CHERRY ST	PICKETT, JOHN S JR	24 MAIER RD		BILLINGS	MT	59101-6515	
03103335124010000	1208 N FRONTAGE RD	RICHARD E ROSEKELLY LIVING TRUST	PO BOX 1269		RED LODGE	MT	59068-1269	
03103335124020000	1218 N FRONTAGE RD	WOLFE, RICHARD L	PO BOX 50334		BILLINGS	MT	59105-0334	
03103335124030000	1228 N FRONTAGE RD	WOLFE, RICK	PO BOX 50334		BILLINGS	MT	59105-0334	
03103335124040000	1234 N FRONTAGE RD	MICHUNOVICH, JOHN G CO-TRUSTEE	1303 NEZ PERCE DR		LAUREL	MT	59044-9645	
03103335124050000	N FRONTAGE RD	MICHUNOVICH, JOHN G & CATHERINE J-	1303 NEZ PERCE DR		LAUREL	MT	59044-9645	
03103335201060000	ROSEBUD LN	EKLUND, JOHN R & RAE ANN	5220 PRYOR MOUNTAIN VIEW DR		BILLINGS	MT	59101-7227	
03103335202030000	934 US HIGHWAY 87 E	SUDS HUT OF LOCKWOOD INC	PO BOX 3445		BOZEMAN	MT	59772-3445	
03103335202050000	1092 US HIGHWAY 87 E	HOUGEN, THOMAS P	PO BOX 3445		BOZEMAN	MT	59772-3445	
03103335202060000	1028 US HIGHWAY 87 E	BILLINGS HOLDINGS LLC	600 S MAIN ST		BUTTE	MT	59701-2534	
03103335202070000		BILLINGS HOLDINGS LLC	600 S MAIN ST		BUTTE	MT	59701-2534	
03103335204030000	1140 N FRONTAGE RD	BIG HORN INDUSTRIAL PARK LLP	1140 N FRONTAGE RD		BILLINGS	MT	59101-7391	
03103326409020000	221 LOMOND LN	CORCORAN PROPERTIES LLP	221 LOMOND LN		BILLINGS	MT	59101-7350	
03103326409030000		MOLLERSTUEN, JAMES E	400 LOMOND LN		BILLINGS	MT	59101-7348	
03103326410010000	1305 TAYLOR PL	HAROLD D ANKRUM TRUST &	1305 TAYLOR PL		BILLINGS	MT	59101-7356	
03103326410020000	1323 TAYLOR PL	KELLER TRANSPORT INC	PO BOX 30197		BILLINGS	MT	59107-0197	
03103326411010000	1353 TAYLOR PL	BRENNTAG WEST INC	100 STAMFORD PL STE 14		STAMFORD	CT	06902-6747	
03103326101010000	403 LOMOND LN	BERSCHIED, MARTIN F	403 LOMOND LN		BILLINGS	MT	59101-7348	
03103326101020000	349 LOMOND LN	KUCK TRUCKING INC	227 GLENHAVEN DR		BILLINGS	MT	59105-3503	
03103326101030000	345 LOMOND LN	JORGENSEN, FRED JR	2956 STILLWATER DR		BILLINGS	MT	59102-6146	
03103326101040000	LOMOND LN	YELLOWSTONE COUNTY	PO BOX 35001		BILLINGS	MT	59107-5001	
03103326101060000	505 LOMOND LN	JORGENSEN, FRED JR	2956 STILLWATER DR		BILLINGS	MT	59102-6146	
03103326102010000	510 KLENCK LN	BERTRAM, GRAFTON L	C/O: BERTRAM DRILLING, INC	PO BOX 2053	BILLINGS	MT	59103-2053	

TABLE 1 (CONTINUED) LAND OWNERSHIP CONTROLLED GROUNDWATER AREA LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

PARCELID	PROPERTY ADDRESS	OWNER NAME		OWNER ADDRESS			
03103326102020000	532 KLENCK LN	CORCORAN PARTNERSHIP	532 KLENCK LN		BILLINGS	MT	59101-7345
03103326102040000	542 KLENCK LN	ADAMS, JESSE GENE	542 KLENCK LN		BILLINGS	MT	59101-7345
03103326203010000	516 SANDY LN	HENRY, ROGER D & SHARON L	516 SANDY LN		BILLINGS	MT	59101-7357
03103326204010000	1117 DOON AVE	WAGENMAN, NEAL A	PO BOX 31534		BILLINGS	MT	59107-1534
03103326204040000	1123 DOON AVE	DAVIS, WESLEY E & RHONDA L	92 SKYLINE DR		BILLINGS	MT	59105-3038
03103326204060000	534 BONNIE I N	WAGENMAN, NEAL A & CHERYL K	4929 STONE RIDGE CIR		BILLINGS	MT	59106-4417
03103326204100000	BONNIELN	WAGENMAN NEALA& CHERYLK	4929 STONE RIDGE CIR		BILLINGS	MT	59106-4417
03103326204110000	BONNIELN	WAGENMAN NEALA & CHERYLK	4929 STONE RIDGE CIR	-	BILLINGS	MT	59106-4417
03103326204120000	BONNIELN	WAGENMAN NEAL A& CHERYLK	4929 STONE RIDGE CIR		BILLINGS	MT	59106-4417
03103326204120000	BONNIELN	WAGENMAN NEALA& CHERYLK	4929 STONE RIDGE CIR		BILLINGS	MT	59106-4417
03103326204140000	BONNIELN	WAGENMAN NEAL A & CHERYL K	4929 STONE RIDGE CIR		BILLINGS	MT	59106-4417
03103326204150000	1135 DOON AVE	WAGENMAN NEAL A& CHERYLK	4929 STONE RIDGE CIR		BILLINGS	MT	59106-4417
03103326204170000	504 LOMOND LN	SMITH JOHN D& SHARON D	522 LOMOND LN		BILLINGS	IMT	59101-7347
03103326204180000	518 LOMOND LN	SMITH JOHN D & SHARON D	52210MOND1N		BILLINGS	MT	59101-7347
03103326204190000	518 LOMOND LN	SMITH JOHN D & SHARON D	52210MOND1N		BILLINGS	MT	59101-7347
03103326204150000	522 LOMOND LN	SMITH, JOHN D & SHARON D	522 LOMOND LN		BILLINGS	MT	59101-7347
03103326204200000	528 LOMOND LN	WOLFE TROY C	PO BOX 50149		BILLINGS	MT	59105-0149
03103326204210000	534 LOMOND LN	WHITRY DAN C	5341 OMOND I N		BILLINGS	MT	59101-7347
03103326204220000	LOMONDUN	WHITBY DAN	534 LOMOND LN		BILLINGS	MT	59101-7347
03103326204230000	546 LOMOND I N	CLEVELAND SANDRAL	546 LOMOND LN		BILLINGS	MT	59101-7347
03103326204250000	LOMONDIN	CLEVELAND SANDRAL	546 LOMOND LN		BILLINGS	MT	59101-7347
03103326201200000	EGHIOTED EN	COPART OF WASHINGTON INC	14185 DALLAS PKWY STE 300		DALLAS	TX	75254-1327
03103326301200000	N FRONTAGE PD	HEALOW LINDA KILLION	312 CLARK AVE		BILLINGS	MT	59101-1721
03103326303010000	11127 N FRONTAGE RD	HEALOW LINDA KILLION	1312 CLARK AVE		BILLINGS	MT	59101-1721
03103326303020000	1155 N EPONTAGE PD	HOPPMAN IOSEPH D& LINDA K	3468 SPALDING AVE		BILLINGS	MT	59106-1055
03103326303040000	1210 LOCKWOOD PD	HOPPMAN, JOSEPH D & LINDA K	3468 SPALDING AVE		BILLINGS	MT	59106-1055
03103320303040000	1210 LOCKWOOD RD	HOLTMAN, SOBELLI DA ENDAN	C/O GLOBAL TOWER PARTNERS -		DIEEMOO	Del D	00100-1000
02102226202200000	1200 LOCKWOOD PD	GTP ACOULSITION PARTNERS ILLIC	PROP TAX DEPT	PO BOX 811510	BOCA RATON	FI	33481-1510
03103320303300000		DINNOW PROPERTIES LLC	PO BOX 30334	10 BOX OTTOID	BILLINGS	MT	59107-0334
03103320300080000	150 LOMOND LN	PINNOW PROPERTIES LLC	PO BOX 30334		BILLINGS	MT	59107-0334
031033263061100000	234 LOMOND LN	CHILTON VIRGI	1117 COOK AVE		BILLINGS	MT	59102-5504
03103326306110101	234 LOMOND LN	BLAIR LORIM	234 LOMOND LN TRUP 1		BILLINGS	MT	59101-7301
03103320306110104	234 LOMOND LN	CEIST KATHLEEN M			BILLINGS	MT	50101-7301
02102226206110104		TUDIEV KENNETH SHAWA	715 S 28TH ST APT 105		BILLINGS	NAT.	50101-4421
03103320300119003	234 LOMOND LN	MALSON MALITNEY M	2341 OMONID 1 N TRL P 6		BILLINGS	SAT	50101 7302
02102226206120000		MODDIS DOREDT D	236 LOMOND LN		BILLINGS	MT	50101 7350
03103326300120000			PO POX 1338		BILLINGS	DAT.	60103 1339
03103320307010000	1007 ISLAND DADK DD	DAILEY THOMAS A	1007 ISLAND PAPK PD		RILINCS	MT	50101 7319
03103326308010000	1025 ISLAND PARK RD	MAKEEEE TEODY A & NILLED	1000 KAY DD		BILLINGS	MT	50101-7318
03103326306020000	11115 ISLAND PARK RD	INARCEPT, LEART A & JULIE D	11115 ISLAND PARK PD		DILLINGS	NAT.	59101-0910
03103326309010000	BONNIE I N	HANGON DALEE & HIDTH C			DILLINGS	INT NAT	50101-7317
03103320309020000	DONNIE LN	HANSON DALE E & JUDITH C			DILLINGS	NAT	50101-5147
03103326309030000	DOMNIE LIN	EASCHING DALL	2426 DECDAET IN		BILLINGS	IVI I	59101-9147
03103326309070000	1327 SANDT LIN	EASCHING, FAUL	2436 BECDAET I M		DILLINGS	IVI I	50101-7020
03103326309090000	1107 ISLAND DARK PD	MODDIE BANDY I	1107 ISLAND DADK PD		DILLINGS	I IVI I	59101-7020
03103326309100000	TIUTISLAND FARK RD				BILLINGS	IVI I	59101-7317
03103320310010000	14405 IOLAND DADK DD	UOLTON DEVOCABLE TRUCT	1970 CALICO AVE		DILLINGO		09100-2006
03103320310070000	1100 IOLAND PARK RD				DELINCE	AL.	60101 7270
03103320311010000	254 DONNIE I N	TECH RONALDE			DILLINGO	I EVI I	50101-7379
03103320311030000					DILLINGS	IVE I	50101-7379
03103320311040000		MCCHESNEY DATDICK	PO POX 20452		DILLINGS	IVI I	50104-7379
02102226211070000	11112 DOON AVE	CAPPOLE CHAPLES M	1112 DOPN AVE		PILLINGS	IVII	50104-0452
03103320311060000	100 LOMOND LN	MOLLEDSTIEN IMMESE	DO POY 50040		DILLINGO	INT.	60105 0040
03103320312010000	1400 LONIOND LIN	WOLLENGTUEN, JAWEG E			DILLINGS	[IVI]	158105-0040

TABLE 1 (CONTINUED) LAND OWNERSHIP CONTROLLED GROUNDWATER AREA LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

PARCELID	PROPERTY ADDRESS	OWNER NAME	OWNER ADD	RESS		
03103326312070000	410 LOMOND LN	STR LLC	PO BOX 81094	BILLINGS	MT	59108-1094
03103326312080000	418 LOMOND LN	MOCK, JAMES D & SANDRA R (RLE)	317 LINCOLN AVE S	SIDNEY	MT	59270
03103326312100000	BONNIE LN	MOFFETT, DAVE W	4103 JANSMA AVE	BILLINGS	MT	59101-5446
03103326312110000	409 BONNIE LN	STR LLC	4431 BOWMAN DR	BILLINGS	MT	59101-9741
03103326312130000	409 BONNIE LN	TIPTON, TERRY	PO BOX 21123	BILLINGS	MT	59104-1123
03103326312160000	BONNIELN	TIPTON, TERRY	PO BOX 21123	BILLINGS	MT	59104-1123
03103326401020000	1217 N FRONTAGE RD	ROSEKELLY, RICHARD F TRUSTEE	PO BOX 1269	REDLODGE	MT	59068-1269
03103326401030000	1225 N FRONTAGE RD	BAKER, ROBERT A & BETTY	1225 N FRONTAGE RD # 8	BILLINGS	MT	59101-7315
03103326401060000	1243 N FRONTAGE RD	STANHOPE, CLYDE	6001 PLEASANT HOLLOW TRI	SHEPHERD	MT	59079-3339
03103326401070000	1249 N FRONTAGE RD	MCKITTRICK, JANICE RAE & KIM RENEE	1249 N FRONTAGE RD	BILLINGS	MT	59101-7315
03103326401090000	1300 LOCKWOOD RD	ICC INSULATION & URETHANE INC	1270 LOCKWOOD RD STOP 9	BILLINGS	MT	59101-7387
03103326401100000	1270 LOCKWOOD RD	RIDGEWOOD PROPERTIES LLC	PO BOX 20855	BILLINGS	MT	59104-0855
03103326401110000	1220 LOCKWOOD RD	DRINKWALTER, WILLARD R	2546 US HIGHWAY 87 E	BILLINGS	MT	59101-6648
03103326402010000		YELLOWSTONE COUNTY	PO BOX 35001	BILLINGS	MT	59107-5001
		INVESTMENT PROPERTIES FINANCE GROUP		aller to b		00101 0001
03103326402020000		LLC	PO BOX 1952	GREAT FALLS	MT	59403-1952
03103326402030000	OLD HARDIN RD	SECTOR CORPORATION	PO BOX 17095	PORTIAND	OR	97217-0095
03103326402040000	1419 OLD HARDIN RD	LAFOUNTAIN, VICTORIA JEFFREY	PO BOX 152	SHEPHERD	MT	59079-0152
03103326402050000	4053 OLD HARDIN RD	CROME, LEN	2108 PHOEBE DR	BILLINGS	MT	59105-3741
03103326402060000	1445 OLD HARDIN RD	REINEKE, J MARIE	2217 US HIGHWAY 87 E	BILLINGS	MT	59101-6650
03103326402070000	1447 OLD HARDIN RD	EDWARDS, CLYDE	1447 1/2 OLD HARDIN RD	BILLINGS	MT	59101-6559
03103326402080000	1457 OLD HARDIN RD	EDWARDS, JUSTIN J	1457 OLD HARDIN RD	BILLINGS	MT	59101-6559
03103326402090000	1505 OLD HARDIN RD	MIDDLESWORTH, RON DAVIS & PEGGY	1507 OLD HARDIN RD	BILLINGS	MT	59101-6558
03103326402100000	1511 OLD HARDIN RD	SUNDERLAND, PAUL A	729 CAVE RD	BILLINGS	MT	59101-7243
03103326402110000	1519 OLD HARDIN RD	HAWKINS INC	2381 ROSEGATE	SAINT PAUL	MN	55113-2625
03103326402120000	OLD HARDIN RD	EDWARDS, JUSTIN J	1457 OLD HARDIN RD	BILLINGS	MT	59101-6559
03103326402140000		LAFOUNTAIN, JOHN DAVID	PO BOX 632	GREAT FALLS	IMT	59403-0632
03103326403020000	1324 LOCKWOOD RD	WS BILLINGS REAL ESTATE INC	PO BOX 296	WALISALI	WAR.	54402-0296
03103326404010000	113 BRICKYARD LN	CARON, ZITA W	113 BRICKYARD LN	BILLINGS	MT	59101-7352
03103326404020000	105 BRICKYARD LN	ALLISON, KALYN	105 BRICKYARD LN	BILLINGS	MT	59101-7352
03103326404030000		HICKEL, KENNETH E	2511 1ST AVE N	BILLINGS	MT	59101-2320
03103326404040000	121 BRICKYARD LN	BEEBE, ARTHUR L & CAROLYN L	PO BOX 1852	BILLINGS	MT	59103-1852
03103326404050000	127 BRICKYARD LN	TRUSSES INC	PO BOX 1852	BILLINGS	MT	59103-1852
03103326405010000	131 BRICKYARD LN	STARVATION RANCH LLC	813 3RD AVE N	BILLINGS	MT	59101-2502
03103326407010000	1430 LOCKWOOD RD	LOCKWOOD LAND LLC	3501 US HIGHWAY 87	GREATEALLS	MT	59404-6008
03103326409010000	139 LOMOND LN	CORCORAN PROPERTIES LLP	PO BOX 1472	BILLINGS	MT	59103-1472
03103325301010000	1516 OLD HARDIN RD	PRINCE INC	PO BOX 440	EORSYTH	MT	50327-0440
03103326413110000		MARTE M NELSON TRUST	3007 RADCLIFFE DR	BILLINGS	MT	50102-0728
03103326413010000		MARTE M NELSON TRUST	3007 RADCLIFFE DR	BILLINGS	MT	50102-0728
03103326405200000		JONES JAY & MARIE G	1443 GORDON DR	BILLINGS	MT	50101 7252
03103326405090000	1443 GORDON DR	JONES, JAY & MARIE G	1443 GORDON DR	BILLINGS	MT	50101-7353
03103335123080000	101 CHERRY ST	PICKETT, LINDSEY L& CHAD E	101 CHERRY ST	BILLINGS	MT	50101-7555
03103335123200000	CHERRY ST	PICKETT, JOHN S JR	24 MAIER RD	BILLINGS	MT	50101-0511
03103335123090000	CHERRY ST	PICKETT, JOHN S JR & CLAUDINE	24 MAIER RD	BILLINGS	AAT.	50101-0515
03103335123100000	107 CHERRY ST	PICKETT, JOHN S JR & CLAUDINE	24 MAIER RD	BILLINGS	LAT.	50101-0515
03103335123110000	115 CHERRY ST	GOKEY, JAMES R	115 CHERRY ST	BILLINGS	NAT.	50101-6511
03103335123120000	121 CHERRY ST	KOBER, JONATHAN D	2213 HYACINTH DR	BILLINGS	NAT.	50105 4966
03103335123130000	145 CHERRY ST	THORPE, NINA M	145 CHERRY ST	BILLINGS	MT	50101-6614
03103326302070000	CERISE RD	EIDEN, KEN 18,863754% INT	120 CANDLE LN	BOZEMAN	MT	50715 7194
03103326302080000	CERISE RD	MCGLONE HYDROSEEDING LLC	1931 PHOEBE DR	BILLINGS	MT	50105 2744
03103326302090000	CERISE RD	C VON ENTERPRISES LLC	PO BOX 21307	BILLINGS	MT	50104-1307
03103326302100000	CERISE RD	COTTONWOOD CENTER LLC	5285 RIVER RD	LAUREI	MT	59044_8605
03103326302110000	CERISE RD	COTTONWOOD CENTER LLC	5285 RIVER RD	LAUREI	MT	59044-8605
03103326302120000	CERISE RD	COTTONWOOD CENTER LLC	5285 RIVER RD	LAUREL	MT	59044-8605

Note:

All property addresses are Billings, MT 59101.

FIGURES

I

APPENDIX A

I

ALLUVIAL AQUIFER WATER LEVEL FIGURES

.

2

APPENDIX B

Ì

CALCULATED FIXED RADIUS MODEL FOR OU1 AND MODELER'S RESUME

Calculated Fixed Radius (CFR) Method

$r = SQRT (Qt / 7.48 \pi n H)$

Where:

- r Radius of the Zones (1,2,3) measured from the well (feet)
- Q Annual average pumping rate (gallons per year)
- t Time-of-Travel (TOT); Typically 1, 5, 10 years per Zones 1, 2, 3
- n Porosity of aquifer, estimated (percent)
- H Screened interval of well (feet)
- π pi ~ 3.1416 ...
- 7.48 Conversion factor for gallons to cubic feet

MT Pumping Criteria

Total Volume Not to Exeed (NTE) 10 acre-feet per year 3,258,514 gallons per year

Q-MAX 35 gpm

Total Volume

Pumped minus Operational Days

NTE Total Volume

10 acre-feet per year

t = 1 year

Q-MAX per Well

3,258,514 gallons per year 35 gallons per minute (gpm)

							Yearly Limit of	(full time) to
	r	Q	Q	t	n	Н	10 acre-ft/yr	meet NTE Total
	feet	gpm	gal/year	years	porosity	feet		volume
	59.8	1	525,600	1	0.25	25	(2,732,914)	2,263
	84.6	2	1,051,200	1	0.25	25	(2,207,314)	1,131
	103.6	3	1,576,800	1	0.25	25	(1,681,714)	754
	119.6	4	2,102,400	1	0.25	25	(1,156,114)	566
	133.8	5	2,628,000	1	0.25	25	(630,514)	453
Vol. Exceed	146.5	6	3,153,600	1	0.25	25	(104,914)	377
Vol. Exceed	158.3	7	3,679,200	1	0.25	25	420,686	323
	169.2	8	4,204,800	1	0.25	25	946,286	283
	179.5	9	4,730,400	1	0.25	25	1,471,886	25:
	189.2	10	5,256,000	1	0.25	25	1,997,486	226
	198.4	11	5,781,600	1	0.25	25	2,523,086	206
	207.2	12	6,307,200	1	0.25	25	3,048,686	189
	215.7	13	6,832,800	1	0.25	25	3,574,286	174
	223.8	14	7,358,400	1	0.25	25	4,099,886	162
	231.7	15	7,884,000	1	0.25	25	4,625,486	15:
	239.3	16	8,409,600	1	0.25	25	5,151,086	14:
	246.7	17	8,935,200	1	0.25	25	5,676,686	133
	253.8	18	9,460,800	1	0.25	25	6,202,286	126
	260.8	19	9,986,400	1	0.25	25	6,727,886	119
	267.5	20	10,512,000	1	0.25	25	7,253,486	113
	274.1	21	11,037,600	1	0.25	25	7,779,086	108
	280.6	22	11,563,200	1	0.25	25	8,304,686	103
	286.9	23	12,088,800	1	0.25	25	8,830,286	98
	293.1	24	12,614,400	1	0.25	25	9,355,886	94
	299.1	25	13,140,000	1	0.25	25	9,881,486	9:
	305.0	26	13,665,600	1	0.25	25	10,407,086	8
	310.8	27	14,191,200	1	0.25	25	10,932,686	84
	316.5	28	14,716,800	1	0.25	25	11,458,286	8:
	322.2	29	15,242,400	1	0.25	25	11,983,886	78
	327.7	30	15,768,000	1	0.25	25	12,509,486	7
	333.1	31	16,293,600	1	0.25	25	13,035,086	73
	338.4	32	16,819,200	1	0.25	25	13,560,686	73
	343.7	33	17,344,800	1	0.25	25	14,086,286	69
	348.8	34	17,870,400	1	0.25	25	14,611,886	6
D-MAX	353.9	35	TREE OF CONT	1	0.25	25	15,137,486	6

Total Volume Pumped

NTE Total Volume

10 acre-feet per year

t = 5 years

Q-MAX per Well

3,258,514 gallons per year 35 gallons per minute (gpm)

							minus Yearly	Operational Days
E 1	r	Q	Q	t	n	Н	Limit of 10	(full time) to meet
	feet	gpm	gal/year	years	porosity	feet	acre-ft/yr	NTE Total Volume
	133.8	1	525,600	5	0.25	25	(13,664,570)	11,314
	189.2	2	1,051,200	5	0.25	25	(11,036,570)	5,657
	231.7	3	1,576,800	5	0.25	25	(8,408,570)	3,771
	267.5	4	2,102,400	5	0.25	25	(5,780,570)	2,829
	299.1	5	2,628,000	5	0.25	25	(3,152,570)	2,263
Vol. Exceed	327.7	6	3,153,600	5	0.25	25	(524,570)	1,886
Vol. Exceed	353.9	7	3,679,200	5	0.25	25	2,103,430	1,616
	378.3	8	4,204,800	5	0.25	25	4,731,430	1,414
	401.3	9	4,730,400	5	0.25	25	7,359,430	1,257
	423.0	10	5,256,000	5	0.25	25	9,987,430	1,131
	443.7	11	5,781,600	5	0.25	25	12,615,430	1,029
	463.4	12	6,307,200	5	0.25	25	15,243,430	943
	482.3	13	6,832,800	5	0.25	25	17,871,430	870
	500.5	14	7,358,400	5	0.25	25	20,499,430	808
	518.1	15	7,884,000	5	0.25	25	23,127,430	754
	535.1	16	8,409,600	5	0.25	25	25,755,430	707
	551.5	17	8,935,200	5	0.25	25	28,383,430	666
	567.5	18	9,460,800	5	0.25	25	31,011,430	629
	583.1	19	9,986,400	5	0.25	25	33,639,430	595
	598.2	20	10,512,000	5	0.25	25	36,267,430	566
	613.0	21	11,037,600	5	0.25	25	38,895,430	539
	627.4	22	11,563,200	5	0.25	25	41,523,430	514
	641.5	23	12,088,800	5	0.25	25	44,151,430	492
	655.3	24	12,614,400	5	0.25	25	46,779,430	471
	668.8	25	13,140,000	5	0.25	25	49,407,430	453
	682.1	26	13,665,600	5	0.25	25	52,035,430	435
	695.1	27	14,191,200	5	0.25	25	54,663,430	419
	707.8	28	14,716,800	5	0.25	25	57,291,430	404
	720.4	29	15,242,400	5	0.25	25	59,919,430	390
	732.7	30	15,768,000	5	0.25	25	62,547,430	377
	744.8	31	16,293,600	5	0.25	25	65,175,430	365
	756.7	32	16,819,200	5	0.25	25	67,803,430	354
	768.4	33	17,344,800	5	0.25	25	70,431,430	343
110-1-120	780.0	34	17,870,400	5	0.25	25	73,059,430	333
CHARACK .	791.4	35	18,336,000	5	0.25	25	75,687,430	323

Total Volume

Pumped

Operational

NTE Total Volume

10 acre-feet per year

t = 10 years

Q-MAX per Well

3,258,514 gallons per year 35 gallons per minute (gpm)

							minus Yearly	Days (full time)
ſ	r	Q	Q	t	n	н	Limit of 10	to meet NTE
	feet	gpm	gal/year	years	porosity	feet	acre-ft/yr	Total Volume
	189.2	1	525,600	10	0.25	25	(27,329,140)	22,629
	267.5	2	1,051,200	10	0.25	25	(22,073,140)	11,314
	327.7	3	1,576,800	10	0.25	25	(16,817,140)	7,543
	378.3	4	2,102,400	10	0.25	25	(11,561,140)	5,657
	423.0	5	2,628,000	10	0.25	25	(6,305,140)	4,526
Vol. Exceed	463.4	6	3,153,600	10	0.25	25	(1,049,140)	3,771
Vol. Exceed	500.5	7	3,679,200	10	0.25	25	4,206,860	3,233
	535.1	8	4,204,800	10	0.25	25	9,462,860	2,829
	567.5	9	4,730,400	10	0.25	25	14,718,860	2,514
	598.2	10	5,256,000	10	0.25	25	19,974,860	2,263
	627.4	11	5,781,600	10	0.25	25	25,230,860	2,057
	655.3	12	6,307,200	10	0.25	25	30,486,860	1,886
	682.1	13	6,832,800	10	0.25	25	35,742,860	1,741
	707.8	14	7,358,400	10	0.25	25	40,998,860	1,616
	732.7	15	7,884,000	10	0.25	25	46,254,860	1,509
	756.7	16	8,409,600	10	0.25	25	51,510,860	1,414
	780.0	17	8,935,200	10	0.25	25	56,766,860	1,331
	802.6	18	9,460,800	10	0.25	25	62,022,860	1,257
	824.6	19	9,986,400	10	0.25	25	67,278,860	1,191
	846.0	20	10,512,000	1.0	0.25	25	72,534,860	1,131
	866.9	21	11,037,600	10	0.25	25	77,790,860	1,078
	887.3	22	11,563,200	10	0.25	25	83,046,860	1,029
	907.2	23	12,088,800	10	0.25	25	88,302,860	984
	926.8	24	12,614,400	10	0.25	25	93,558,860	943
	945.9	25	13,140,000	10	0.25	25	98,814,860	905
	964.6	26	13,665,600	10	0.25	25	104,070,860	870
	983.0	2.7	14,191,200	10	0.25	25	109,326,860	838
	1001.0	28	14,716,800	10	0.25	25	114,582,860	808
	1018.7	29	15,242,400	10	0.25	25	119,838,860	780
	1036.1	30	15,768,000	10	0.25	25	125,094,860	754
	1053.3	31	16,293,600	10	0.25	25	130,350,860	730
	1070.1	32	16,819,200	10	0.25	25	135,606,860	707
	1086.7	33	17,344,800	10	0.25	25	140,862,860	686
	1103.1	34	17,870,400	10	0.25	25	146,118,860	666
CLARK .	1119.2	35	28,396,000	10	0.25	25	151,374,860	647

PROJECT SUMMARY

BRUCE D. PETERMAN, PE, PG, MCSE, PMP 1262 Cedar Street Broomfield, Colorado 80020 Home: 303 466-3799 Cell: 303 349-9004 bdpeterman@gmail.com

Professional Summary

Mr. Peterman currently serves as a Senior Environmental Engineer and Chief Information Officer for Pacific Western Technologies, Ltd., in Lakewood, Colorado. He is a registered Professional Engineer in Colorado, a Microsoft Certified Systems Engineer, Certified Project Management Professional, and Professional Geologist with 20 years of professional experience. His experience includes managing information technology, computer network systems, physical security systems, geological engineering, geotechnical, mining, and environmental related projects. His formal background is in geological engineering, hydrogeology, geographical information systems, database development, and computer network systems.

Mr. Peterman has managed many projects involving investigation and remediation of hazardous, radioactive, and toxic waste sites. He has implemented projects and programs that include superfund RCRA/CERCLA regulations, underground storage tank investigations, hydrogeologic characterization, ground-water remediation, mineral exploration, mine closure design, contaminant fate and transport modeling, analytical sampling, monitoring and recovery well installations, remedial system design and installation, and report preparation.

Projects

- Environmental Project Oversight and Engineering Design Review; Environmental Protection Agency, Region 8, Denver, Colorado; Pacific Western Technologies, Ltd.; Senior Environmental Engineer. Provide engineering support, design reviews, field supervision, and construction oversight for EPA Region 8 on environmental remediation projects in Colorado, Montana, and Utah. Develop responses to public comments on Proposed Plans for EPA Superfund sites as well as support subsequent development of Record of Decision documents. Perform technical document reviews on behalf of EPA for investigation and remediation projects where work is being performed by the PRPs. Coordinate field construction oversight for EPA of hazardous waste removals and engineered waste placement or treatment facilities.
- Information Technology, Environmental Engineering, Project Management; Various Clients; Pacific Western Technologies, Ltd.; Chief Information Officer / Project Manager. Manage projects for a variety of clients with services in environmental, engineering, geotechnical, information systems, database management, and geographical information systems. Manage corporate Information Technology (IT) assets, network infrastructure, operations, technical staff, and outside vendors. Design, implement, and support resources for corporate headquarters IT needs and operational support of new business ventures in both environmental engineering and information systems. Install, test, and approve new computer systems, network hardware, server upgrades, and software.
- Environmental Project Oversight and Construction Review; Ogden Rail Yard Site, Ogden, Utah; Environmental Protection Agency, Region 8; Project Engineer. Provide Remedial Action (RA) oversight at the Ogden Rail Yard site, an active railroad facility comprising 1,120 acres in an area roughly 3.5 miles long and one-half mile wide that stretches along the Weber River. The primary contaminants are sediments contaminated with DNAPL polynuclear aromatic hydrocarbons, and ground water plumes characterized by fuels, solvents, and solvent degradation products as a result from operation of a former gas plant, locomotive maintenance, and machine shop facilities. Provide oversight for EPA of the PRP's construction and implementation of the RA at the Ogden Rail Yard site, including construction of a cofferdam and cover, sampling and removal of the industrial sewer lines, and extraction of DNAPL, and other RA activities. Review all versions of the PRP contractor's construction completion report (CCR), provide briefings to EPA, the PRP, and the PRP's consultant

Bruce D. Peterman, PE, PG, MCSE Project Summary Page 2 of 4

on the anticipated content of the CCR, review other technical memoranda, letter reports, and workrelated reports prepared by the PRP.

- Environmental Project Oversight and Engineering Design Review; Rocky Mountain Arsenal Remedial Design/Remedial Action (RD/RA) Oversight Contract, Commerce City, Colorado; EPA Region 8; Environmental Scientist. Provide daily inspections of field construction and remediation activities to support the EPA for ongoing environmental remediation projects at the RMA Superfund Site. Field inspections are documented in daily reports as well as by photographic and video documentation. Project oversight includes monitoring excavation and waste removal activities, waste placement at onsite landfills, construction activities of RCRA equivalent covers. Site specific projects include the Basin F Waste Pile removal, construction of Shell Disposal Trenches cover and Integrated Cover System, HWL cover, ELF waste placement operations, Sand Creek Lateral soils removal, and general oversight of primary fieldwork at RMA.
- Information Technology, Datacenter, Alarm Center, Security Systems; Department of 1 Homeland Security – Federal Protective Service, Lakewood, Colorado; Senior Systems Administrator. Successfully managed the computer datacenter and support systems for the Denver MegaCenter (DMC) operated by the Department of Homeland Security - Federal Protective Service. The DMC is a 24/7 mission critical central security alarm monitoring and federal police dispatch facility responsible for physical security at government owned and leased buildings throughout 19 western states and supporting a federal police force of 400 officers and 12,000 contract guards. Collaborated with three other national MegaCenters in the design of new network systems supporting agency transition and integration into the Department of Homeland Security. Researched, recommended, and performed equipment upgrades to improve operations of dispatching and the technical support helpdesk. Operated networks on Microsoft and Novell client/server systems supporting about 65 personnel on LAN platforms and connections to WAN platforms to other sister MegaCenters. Maintained database servers that support police dispatching functions, facility locations, security alarm systems, criminal background information, and technical support helpdesk operations.
- Waste Chemical Classification, Assessment, and Disposal; Rocky Flats Environmental Technology Site, Golden, Colorado; Kaiser-Hill, LLC; Project Coordinator. Consulting project management services to Kaiser-Hill, LLC for their Waste Chemical Program. Reported to the director of Kaiser-Hill's Waste Chemical Program and supported the director in the daily and programmatic issues of the project. The Waste Chemical Program (WCP) is a program operated by Kaiser-Hill, which supports the U.S. Department of Energy at the Rocky Flats Environmental Technology Site, in Golden, CO. The WCP provides an integrated site-wide approach for the management, collection, and disposal of waste chemicals throughout the site. The WCP effort is a \$27 million program that started in 1997 and was completed by the end of 1999. The WCP involved collection of non-RCRA, RCRA, low-level, and low-level mixed radioactive wastes. Mr. Peterman provided services for cost estimating, procurement strategies, and negotiations with waste services, project technical review, site field services, and field screening equipment monitoring and operations.
- ✓ Ground Water Extraction and Treatment System Design; Branchburg, New Jersey; Viacom International, Inc. and Taylor Forge Stainless; Project Manager. Managed and designed a ground water extraction and soil remediation system for recovery of spent chlorinated solvents. The scope of the system was estimated at \$1.5 to \$2 million for installation and 1 year of operation. Completed the design and planning documentation that was submitted for technical review by the New Jersey Department of Environmental Protection. Completed costs estimates and setup equipment orders for use during system construction. Direct interface with the client providing technical and business decision services for this site.
- Installation of Solvent Vapor Removal System; Denver, Colorado; Colorado Department of Transportation (CDOT); Project Manager. Independent Consultant to CDOT headquarters in south Denver. Responsible for completion and installation of solvent vapor removal system for remediation of single family homes affected by solvent contaminated ground water from CDOT's materials Testing Laboratory. Worked independently with homeowners and CDOT personnel to install the systems. The systems removed solvent vapors that would build up in the home and affect indoor air quality and

Bruce D. Peterman, PE, PG, MCSE Project Summary Page 3 of 4

consequently the health of the residents. Provided the client with technical guidance and research for the installation of systems. Also, completed reports documenting the system installations and operation effectiveness. Additionally, managed project design of air handling systems for apartment buildings that were also affected by the solvents. The air handling systems were designed for central HVAC retrofits that would provide positive pressure and air removal to reduce indoor air solvent concentrations. The project was designed as a contingency to augment active soil vapor removal systems that were to be installed beneath the apartment buildings.

- Industrial Area Operable Units Remedial Investigations; Rocky Flats Environmental Technology Site, Golden, Colorado; EG&G Rocky Flats, Inc. Program Manager. Program Manager for development and integration of the technical and project management aspect of all Industrial Area OUs and presenting proposals to U.S. Department of Energy (DOE) for final concurrence. Implementation of the investigation of the Industrial Area OUs resulted in the collection of samples for confirmation of contamination and risk-based ranking. The comprehensive field program included investigation and characterization of six operable units which consisted of 207 Individual Hazardous Substance Sites. The field effort resulted in collecting 891 surface soil, 1480 soil gas, 33 asphalt, and 122 sediment samples. Also, tank and pipeline investigation and characterization were performed. Abandoned tanks and pipelines were sampled and over 40 boreholes were drilled around the old process waste system. Seventy-five percent of the tank work was performed in modified Level B PPE and many of the samples were highly radiologically contaminated that new procedures were developed to deliver and analyze the samples. Developed approaches which resulted in a consolidated plan to implement work for the Industrial Area OUs which led a cost productivity savings of \$3.2 million.
- ✓ Interim Measures / Interim Remedial Action Decision Document; Rocky Flats Plant, Golden, Colorado; EG&G Rocky Flats, Inc.; Project Manager. Successfully completed an expedited Interim Measure/Interim Remedial Action (IM/IRA) Decision Document. Development of the IM/IRA was in support of OU 4 Pondcrete Low-Level Waste activities as part of a RCRA partial closure process. The IM/IRA was the definitive document to provide the regulatory permit and use of equipment and processes to facilitate waste removal from the solar ponds. Approval of the IM/IRA required extensive regulatory review, public comment period, and responsiveness summary. The completion of the final IM/IRA in April, 1992 exceeded the expectations of DOE/RFO, EG&G, and the regulators. The project was completed with minimal budget (approximately \$50K) and facilitated the installation of equipment totaling approximately \$5 million to proceed on schedule for the pondcrete efforts.
- Environmental Investigation; Oxnard High Precision Stainless Steel Forge Facility, Oxnard California; EG&G Rocky Flats, Inc.; Project Manager. Completed data analysis of the Oxnard environmental investigation and assessment. Provided reports to DOE Field Office and DOE Headquarters, Project Tracking Report updates, development of Activity Data Sheets, and preparation of the EM-40 Baseline to support Major System Acquisition requirements. Successfully maintained and developed baseline schedules and cost estimates to support DOE's 5-years plan.
- RCRA Facility Investigation / Remedial Investigation Work Plan Operable Unit No. 8 700 Area; Rocky Flats Plant, Golden Colorado; EG&G Rocky Flats, Inc.; Project Manager. Successfully developed and procured a subcontract for preparation of the Phase I RFI/RI Work Plan. The OU 8 Work Plan involved investigation under RCRA and CERCLA. The Final Work Plan was delivered ahead of schedule in November 1992. Established the baseline schedule and cost estimate for implementation of the Phase I RFI/RI Work Plan. Consistently identified areas where scope, cost, and schedule could be optimized either at the Work Plan development stages or during field implementation. Modified existing work plans to utilize more cost effective processes e.g. the observational approach to reduce upfront field work costs. Developed and maintained detailed project schedules that exceeded the requirements of the company Management Control System.
- RCRA Facility Investigation / Remedial Investigation Work Plan Operable Unit No. 4 Solar Evaporation Ponds; Rocky Flats, Golden, Colorado; EG&G Rocky Flats, Inc.; Project Manager. Completed and obtained approval of the Phase I RCRA Facilities Investigation (RFI)/Remedial Investigation (RI) Work Plan for OU 4. The OU 4 Work Plan involved environmental investigation and

Bruce D. Peterman, PE, PG, MCSE Project Summary Page 4 of 4

closure under RCRA. The RFI/RI Work Plan provided the basis and description for field work activities regarding environmental investigation and restoration. The Work Plan was completed on schedule, under budget, and the regulatory milestones were met. Successfully coordinated the procurement process and selection of a subcontractor to implement the field activities outlined in the OU 4 Work Plan. Initiated development of a field Implementation Plan which included details regarding schedule for the OU 4 project covering multiple fiscal years through the Phase I RFI/RI field activities.

Environmental Investigations of Underground Storage Tank Sites; Various Sites in Florida, Georgia, Alabama, and Mississippi; BP Oil, Amoco, Gulf, and Chevron; Project Manager, Project Engineer, and Hydrogeologist. Managed twenty-two environmental restoration projects related to petroleum contamination with combined budgets of approximately \$6 million dollars. Directed project teams consisting of engineers, hydrogeologists, toxicologists and technicians in all phases of contamination assessment and remediation. Responsible for budgetary control, cost estimating, subcontractor management, quality control, scheduling, client and regulatory interfacing, permitting and compliance, personnel recruiting, and proposal preparation. Also, responsible for remediation system designs for environmental restoration and clean-up of petroleum contaminated sites. Projects involved oversight of staff level professionals regarding design of remedial approaches and installation of ground water recovery and soil treatment systems. Managed development of ground-water treatment system specifications and construction planning. Also, supervised field construction and remediation systems installation. Maintained training efforts for contracting issues, site health and safety, Geotechnical field considerations and site facility construction.

- Hydrogeological Characterization and Siting Criteria; Superconducting Super Collider, Rapid City, South Dakota; U.S. Department of Energy and the State of South Dakota; Research Assistant. Conducted graduate research for a Master of Science thesis concerning a hydrogeologic investigation for South Dakota's proposal to the U.S. Department of Energy to locate the Superconducting Super Collider (SSC) within the state. The investigation involved drilling and installation of monitoring wells, water quality analysis, hydraulic conductivity tests, and prediction of ground water inflow rates during SSC construction.
- Abandoned Mine Land Reclamation Support; Various Sites in Colorado, Wyoming, and New Mexico; Office of Surface Mining; Remote Video Inspection System (RVIS) Operator. Used RVIS for downhole inspection of subsurface features. Application of the RVIS was used to assess progress of ground stabilization project which primarily involved slurry or grout backfilling of abandoned coal mines. RVIS data was interpreted by the operator to assist project geologists and engineers in the identification and interpretation of subsidence and other abandoned mine hazards. Assisted in numerous abandoned mine land reclamation projects throughout Colorado, New Mexico, Arizona, and Wyoming. Tasks involved mine closure design, drilling, logging, and operation and monitoring of backfilling processes.
- Quality Assurance/Quality Control and Concrete Testing; Various Construction Sites in Colorado; Commercial Clients; Geotechnical Technician and QA/QC Inspector. Completed work involving inspection of commercial construction sites, mainly large office buildings. Inspection consisted of reconciling blueprint specifications with field as-built, testing of fireproofing application, reconciling welding and high-strength bolt installation, soil testing, and concrete testing.
- Mining Exploration in Montana Gold Districts; Gold Field Mining Corporation; Geological Field Assistant. Performed exploration field work for gold mining prospects in Montana gold districts. Field work involved geological mapping, soil and rock sampling, surveying, claim staking, sample preparation, drafting and data plotting, and sampling and logging with a reverse circulating drill rig. Also, provided oversight of mineral sample preparation lab with respect for all sample preparation activities in the field.

APPENDIX C

LSGPS SUMMARY OF OU2 CGA BUFFER ZONE MODELING AND MODELER'S RESUME

LSGPS Summary of OU2 CGA Buffer Zone Modeling

Controlled Groundwater Area

Table of Contents

Exe	ecutive \$	Summary	,	. 111
1	Flow a	and Parti	cle Transport Modeling	1
	1.1	Genera	I Flow Model Configuration	1
		1.1.1	Numerical Grid	1
		1.1.2	Boundary Conditions	2
		1.1.3	Flow Solution	3
	1.2	Genera	I Particle Transport Model Configuration	3

Appendices

None

I

Acronyms

CGA	Controlled Groundwater Area
GPM	Gallons per minute
LSGPS	Lockwood Solvent Groundwater Plume Site
OU2	Operable Unit 2
USGS	United States Geological Survey

Executive Summary

Cardno has constructed a numerical groundwater flow and particle transport model at Operable Unit 2 (OU2) of the Lockwood Solvent Groundwater Plume Site (LSGPS). The purpose of the modeling effort was to develop the Controlled Groundwater Area (CGA) for OU2 of the LSGPS to prevent the installation of residential or industrial wells in the alluvial aquifer in areas where there might be the possibility of withdrawing contaminated groundwater, or significantly expanding the dissolved phase plume. The result of this modeling effort is the development of a buffer zone, in which the installation of residential or industrial wells will be prohibited in the alluvial aquifer. Conservative estimates for aquifer parameters, well placement and pumping conditions were used to ensure the buffer zone is protective.

The United States Geological Survey (USGS) MODFLOW model engine was used to simulate the groundwater flows and levels of the region and USGS MODPATH was used to generate the hypothetical capture zone due to pumping adjacent to OU2 of the LSGPS. A conceptual model was created to incorporate the data and existing knowledge of the site and from this conceptual model the numerical model was used. Based on the monitoring data, borehole data, and other information that has been gathered recently, a groundwater flow model was constructed.

Based on the results of the MODFLOW and MODPATH models, a buffer zone ranging from 50 meters near the Yellowstone River, to 200 meters on the southern portion of OU2 of the LSGPS was determined to be protective.

This report assumes the reader is familiar with the site, site conditions and site data.

1 Flow and Particle Transport Modeling

The United States Geological Survey (USGS) MODFLOW finite-difference groundwater model was used to simulate the groundwater flows and levels of the region and USGS MODPATH, a particle-tracking postprocessing model, was used to generate the hypothetical capture zone due to pumping adjacent to Operable Unit 2 (OU2) of the Lockwood Solvent Groundwater Plume Site (LSGPS).

1.1 General Flow Model Configuration

1.1.1 Numerical Grid

The model is based on the USGS MODFLOW finite-difference grid and consists of 3 layers with grid spacing of 25 meters by 25 meters for each model cell. The grid is rotated approximately 315 degrees to match the regional groundwater flow direction.

The top elevation values for layer 1 were taken from the USGS National Elevation Dataset (NED).

The top elevation for layer 2 was set at 940 meters above sea level. The top elevation for layer 3 was set at 933 meters above sea level. The bottom elevation for layer 3 was set at 914 meters above sea level.

This information was based on the literature that was available from the site. The following figure shows a profile with a Z magnification of 7.0.

- Fac

1.1.2 Boundary Conditions

Boundary conditions were assigned to the numerical model to replicate the regional groundwater flow gradients. Specified head values were placed on the southern and northern boundaries to simulate groundwater flow in a north westerly direction. A value of 949 meters was assigned along the top of the alluvium and values of 941.6 meters and 939.6 meters along the Yellowstone River. The average gradient across the model was 0.004.

All other boundaries were set to "no flow" conditions. A recharge rate of 0.00028 meters/day (approximately 4 inches per year) was the calculated infiltration rate into the top layer of the model. A value of 1.0 m/day was uniformly applied for the hydraulic conductivity for layer 1 to represent the finegrained section (generally a silty clay). A value of 70.0 m/day was uniformly applied for the hydraulic conductivity for layer 2 to represent the alluvial aquifer (generally a sandy gravel). A value of 1.0 m/day was uniformly applied for the hydraulic conductivity for layer 3 to represent the underlying bedrock. A value of 10 was used to represent the vertical anisotropy (the ratio of horizontal conductivity to vertical conductivity Kh/Kv). This was also deemed representative of the nature of the vertical flow in the region.

1.1.3 Flow Solution

The groundwater flow solution is presented below.

1.2 General Particle Transport Model Configuration

The USGS model, MODPATH, was the model that was used to compute the reverse particle tracking of pumping wells adjacent to Operable Unit 2 (OU2) of the Lockwood Solvent Groundwater Plume Site (LSGPS). These hypothetical pumping wells were used to develop the Controlled Groundwater Area (CGA) for OU2 of the LSGPS. MODPATH uses the groundwater levels and flow solution from the MODFLOW model.

For the pumping of the alluvial aquifer, two wells were placed on each adjacent side of the OU2 plume. Simulating two wells on each side of the plume increases the level of conservatism in developing the buffer zone. The wells were pumped at a rate of 35 gallons per minute (gpm). This rate is the maximum pumping rate allowed for single well permits in the region.

The MODPATH model was set up with 10 particles placed around each of the four pumping wells and the particles were tracked backward in time moving upgradient through the groundwater flow system. A conservative effective porosity value of 0.22 was applied uniformly to all model cells.

The following figure shows the results of the backward particle tracking from MODPATH.

The buffer zone was defined by the external boundary of the modeled capture zone on each side of the OU2 plume. Wells that are installed outside the buffer zone can be pumped at up to 35 gpm and not withdraw contaminated water or affect the distribution of the dissolved phase plume.

Based on the results of the MODFLOW and MODPATH models, a buffer zone ranging from 50 meters near the Yellowstone River, to 200 meters on the southern side of OU2 of the LSGPS was determined to be protective.

4

R. Jeffrey Davis, PE

Summary of Experience

Mr. Jeffrey Davis is a Senior Hydrogeologist and licensed Professional Engineer with over 20 years of experience in the mining and oil and gas sectors in the areas of environmental engineering and groundwater and GIS modeling and software and model development. He has provided consulting services for local, national, and international clients pertaining to mining and oil and gas projects. He has extensive knowledge of groundwater flow and transport principles and has lectured and taught numerous workshops and classes worldwide. In addition, he was the chief engineer overseeing the development of the popular groundwater modeling software, GMS.

Mr. Davis is active in the mining industry in water management, remediation, NEPA activities, and other groundwater related activities. Mr. Davis has served as chair and keynote speaker for mining conferences focused on water management and presented current treatment approaches for mine wastewater. Mr. Davis is active with the National Groundwater Association (NGWA), Society for Mining, Metallurgy & Exploration (SME), Society of Petroleum Engineers (SPE) the Energy & Mineral Law Foundation (EMLF), the Rocky Mountain Mineral Law Foundation (RMMLF) and the American Bar Association (ABA) on mining and oil and gas issues as it relates to groundwater protection

Significant Projects

Technical Reviewer/Advisor – U.S. Environmental Protection Agency

Mr. Davis has been an invited participant and technical reviewer for the EPA's *Study of Hydraulic Fracturing for Oil and Gas and Its Potential Impact on Drinking Water Resources.* In addition to participating in the technical roundtables and technical workshops as an advisor, Mr. Davis recently completed a peer review of the EPA's five retrospective case studies.

Groundwater Lead – ExxonMobil Environmental Services – Southern Texas

Mr. Davis is currently the groundwater lead for performing the fate and transport modeling and analysis of chloride contamination in Southern Texas near the Gulf of Mexico for ExxonMobil. As part of the site mitigation phase, modeling is being used to determine the potential migration of the chloride through the shallow aquifer system and nearby receptors.

Technical Reviewer - Kennecott Utah Copper, Rio Tinto - Utah

Mr. Davis recently completed an independent third party audit for a closure plan pit lake study for Bingham Canyon mine. To ensure the quality and correctness of the study, there was a review the consultant scope of work for the pit lake study, discussions with the consultant staff to discuss understanding of study, methodology, and pathway to completion. A report was compiled and submitted to Rio Tinto of the independent audit.

Groundwater Lead - Beverage & Diamond - Vandalia, Ohio

Mr. Davis provided groundwater expertise in performing the fate and transport modeling and analysis of NaCl contamination of an aquifer. Road salt, which was temporarily stored, caused limited contamination of a shallow aquifer that supplied domestic drinking water to ~24 residential homes. Groundwater monitoring was installed to characterize both the vertical and horizontal extent of the contamination and the monitoring data was

Current Position Senior Consultant

Discipline Areas

- > Hydrogeology
- > NEPA Environmental Impact Analysis
- > Groundwater Modeling
- > Fate & Transport Analysis
- > Total Water
 Management
- > GIS Modeling> Software
- Development

Years' Experience

20 Years

Joined Cardno 2010

Education

- MS, Civil & Environmental Engineering, Brigham Young University, 1998
- > BS, Civil & Environmental Engineering, Brigham Young University, 1993

Professional

Registrations > Licensed Professional

- Engineer (PE), Utah (189690-2202)
- Licensed
 Professional
 Engineer (PE),
 Florida (74838)

Affiliations

 National Groundwater Association(NGWA)

C Cardno Shaping the Future

- Society for Mining Metallurgy & Exploration (SME)
- Society of Petroleum Engineers (SPE)
- International Water Association (IWA)
- > International Mine Water Association
- > Energy & Mineral Law Foundation
- > Rocky Mountain Mineral Law Foundation
- > Society of Petroleum Engineers
- Society for Mining. Metallurgy, & Exploration

carefully analyzed for the predictive modeling. The groundwater flow and transport model included the local domestic pumping wells, which helped determine the possible extent of the chloride impacts. Largely due to the CSM and transport modeling results, litigation was settled out of court to the satisfaction of the client.

Modeling Technical Lead - Mosaic - Lithia, Florida

The primary focus was to develop a contaminant and water budget and management model for Hookers Prairie Mine using the GoldSim modeling software. The purpose of the model was to evaluate the probabilities of the mine meeting its current and future nutrient NPDES loading limits for certain contaminants. The project also included an evaluation of current monitoring data within the mine operations and at discharge locations and the development of a complete monitoring plan integrated into a GIS as part of the model calibration and validation.

Groundwater Lead - Haile Gold Mine Project - near Kershaw, South Carolina

Mr. Davis is the groundwater leader as the third-party contractor in the development of an Environmental Impact Statement for the proposed Haile Gold Mine near Kershaw, South Carolina. The EIS will analyze the potential direct, indirect, and cumulative environmental effects of the proposed project and its alternatives. Current work includes project team coordination for geology and groundwater and surface water resource areas, review of Applicant-supplied information, agency coordination, and public involvement.

Groundwater Lead – Four Corners Power Plant and Navajo Mine Energy Project – Fruitland, New Mexico

Mr. Davis is the groundwater leader as the third-party contractor in the development of an Environmental Impact Statement for the Four Corners Power Plant and Navajo Coal Mine. The EIS will analyze the potential direct, indirect, and cumulative environmental effects of the proposed project and its alternatives. The groundwater portion includes analyzing field investigations, pump tests, conceptual and numerical modeling of the project and surrounding area and remediation and reclamation activities.

Groundwater Lead – BHP Billiton – Pibara, Western Australia

Mr. Davis was one of the groundwater leaders performing a cumulative impact assessment for BHP's plans in expanding its iron ore operations in the Pilbara, Western Australia. This assessment includes identifying the methodology and developing the conceptual models to perform the CIA. The groundwater modeling includes both guantitative and gualitative approaches.

Groundwater Lead - Pacificorp - Southwest Wyoming

Mr. Davis was brought in as part of a technical team to reevaluate groundwater conditions, and treatment and discharge alternatives at the Bridger Coal Mine, Southwest Wyoming. Previous studies and predicted maximum flows into the mine had been exceeded and Jeffrey was brought in as part of a team to reassess the situation and provide solutions.

Environmental Lead – Confidential Due Diligence – Pascagoula, Mississippi

Mr. Davis was the environmental lead, performing an environmental assessment at a chemical plant in Pascagoula, Mississippi, as part of a due diligence effort. A number of groundwater and surface water contamination issues are being addressed due to spills, leaks, and storage of hazardous materials. The chemical plant is located on the Gulf of Mexico and is sensitive to possible environmental impacts from operations of the chemical plant.

Groundwater Lead - MSD Mercury Spill - Cincinnati, Ohio

Mr. Davis was the groundwater lead, performing the fate and transport modeling and analysis of a mercury spill in a municipal landfill in Cincinnati, Ohio. As part of the "project management" phase, modeling was used to determine the potential migration of the mercury through the landfill to the leachate collection system. The modeling efforts examined both the spatial distribution of the mercury transport, and the temporal component as well.

Groundwater Lead – Lockwood Solvent Groundwater Plume – Billings, Montana

Mr. Davis is one of the groundwater leads performing groundwater modeling for the Lockwood Solvent Groundwater Plume site (LSGPS), an EPA Superfund site in Billings, Montana. The LPGPS spans 580 acres and much of the groundwater at the site is contaminated with the volatile organic compounds (VOCs) PCE, TCE, cis-1,2-dichloroethene (DCE) and vinyl chloride (VC).

Groundwater Modeling Lead – Marco Lakes ASR System – Marco Island, Florida

Mr. Davis was the technical advisor to a modeling study to evaluate whether the current Marco Lakes ASR system can handle future water demand projections. Various current and proposed alternatives were evaluated to meet the City's demands. The primary objectives of this modeling study were: estimate the pressure build-up in the ASR wells during future injection cycles; predict the current and future extent of the "ASR" bubble; and simulate the changes in chloride concentrations in the ASR wells during projected future cycles.

Groundwater Modeling Lead – Latt Maxcy – Osceola County, Florida

Cardno was contracted by the Latt Maxcy Corporation to provide hydrogeological investigations, water supply planning, alternatives analysis, and safe yield determinations for the development of large-scale agricultural operations on a 43,000-acre property located in Osceola County. Groundwater flow modeling included working with the staff of the Southwest Florida Water Management District over the course of a year on their East Central Florida Transient (ECFT) model to develop individual and regional cumulative impact assessments for the development of a 23 MGD wellfield with total conjunctive use of groundwater and surface water totaling 47 MGD.

Groundwater Lead - Groundwater Trench Abandonment - Santa Barbara, CA

Mr. Davis was the groundwater lead modeling and analyzing the potential changes to groundwater flow caused by abandonment of two groundwater extraction trenches at the Former ExxonMobil Station in Santa Barbara, California.

Groundwater Modeling Advisor - Office of Surface Mining - Morgantown, West Virginia

Mr. Davis has had a long-term relationship with the Office of Surface Mining (OSM) and worked with engineers at OSM and professors at WVU on the Watershed Characterization Modeling System (WCMS) and integrating the groundwater segment with GMS. In addition, Mr. Davis provided consulting services with groundwater modeling to understand the subsurface mining impacts on surface streams and other water bodies in West Virginia.

Chief Hydrogeologist - Legacy Way - Brisbane, Australia

Mr. Davis provided senior oversight and technical review for all hydrogeologic assessments related to the Legacy Way tunnel design project, a 4.6km underground tunnel in northern Brisbane, Australia. This work included evaluating field tests, geotechnical and environmental reports and modeling of the entire project area.

Hydrogeologist Lead - Ogun Agricultural Cargo Airport Assessment - Ogun, Nigeria

Mr. Davis developed a groundwater model for a proposed agricultural cargo airport (Ogun, Nigeria) to asses nearby well impacts and possible contaminant spill impacts from the airport. The modeling included both flow and fate and transport components

Consultant - Kaman Aerospace RCRA site - Connecticut

Mr. Davis was hired by GZA Environmental to provide consulting services on a remedial project in the state of Connecticut at a former military helicopter manufacturing plant. His role was to aid in the organization of the field data, perform 3d geostatistics for plume characterization and provide support in the conceptualization of the groundwater model and subsequent remediation mode.

Groundwater Modeler Lead - Kennecott Utah Copper, Rio Tinto - South Jordan, Utah

Mr. Davis has worked with the engineers at Kennecott (Utah) over the years, providing technical assistance with their groundwater projects. Most of the work has centered around the cleanup of a large acid mine plume. Another consulting group was involved in the initial groundwater study and Mr. Davis was brought in later for additional advice and investigation of modeling alternatives.

Groundwater Modeler Lead - Williams Air Force Base Superfund Site - Arizona

Mr. Davis was hired by BEM Systems to use an existing groundwater model and propose some remediation strategies for a cleanup project at Williams Air Force Base (Arizona). Modeling was used to simulate a proposed SVE system for the clean-up. The site was a designated EPA Superfund site with multiple VOC-contaminated areas.

Groundwater Modeler Lead - Nevada Energy - Eastern Nevada

A multi-year project, creating both regional and ocal scale groundwater models and reports of Steptoe Valley (Eastern Nevada). The models were part of an Environmental Impact Statement for the construction and operation of Ely Energy Center, a coal power plant. The project included field investigations, pump tests, conceptual and numerical modeling of the area and climate change modeling.

Hydrogeologist Consultant - AquaHydrogeologic - Northern Nevada and Guatemala

Mr. Davis was retained by AquaHydrogeologic for over ten years, providing groundwater consulting services to both private and public agencies in Northern Nevada. These projects have been water resource and water allocation related, as well as contaminated sites and remediation. In 2007, Mr. Davis did work on a project in Guatemala for a proposed gold mine (Cerro Blanco).

Hydrogeologist Advisor - Council for Geoscience - South Africa

Mr. Davis was asked to be an advisor in the development of a finite element model of a large mine in South Africa. Contamination from the mine tailings was spreading through both groundwater and surface water bodies. The model required an extensive stratigraphy model followed by flow and transport modeling.

Training and Consulting - Codelco - near Calama Chile

Mr. Davis was hired to provide training and consulting services to a group of engineers from Codelco. The work primarily centered on the Chuquicamata mine near Calama, Chile. The mine plan was to combine the existing mine with an adjacent mine (Mina Sur). There was also some preliminary work done on a proposed new mine (Mansa Mine).

Groundwater Modeler Lead - City of Roseville, California

The City of Roseville proposed to implement a citywide Aquifer Storage and Recovery (ASR) program to maintain groundwater as a sustainable resource, improve the City's water supply reliability, and meet regional conjunctive use program goals. The City is the CEQA Lead Agency and prepared a Focused Environmental Impact Report (EIR) for the project. As part of this project our role was to develop a regional scale conceptualization for the major portion of the Central Valley area in Northern California, a subsequent regional multilayer groundwater model followed by a number of local scale transport models to simulate pilot tests and understand the aquifer storage and recovery process.

South Florida Water Management District

Over the past several years, Mr. Davis has worked with Jayantha Obeysekera and other members in his group at SFWMD. Mr. Davis has reviewed models, provided training, and advised on their development and implementation of the Regional Simulation Model (RSM). For many years, SFWMD has collaborated with the staff at ERDC (Vicksburg, MS) and Mr. Davis has worked to provide the necessary support for this work. In the early years, it involved working with models such as FEMWATER123 and WASH.

Suwannee River Water Management District

Mr. Davis has had a great relationship with the engineers at the Suwannee District. He has consulted with them on numerous times on the development and application of their regional groundwater model for the entire district. Recently, Mr. Davis was part of the development an automated well permitting tool using the ArcHydro Groundwater tools. Mr. Davis recently completed working on a long term water supply assessment modeling project with SRWMD.

Modeling Support Experience

Mr. Davis provided detailed technical support for groundwater model development with full responsibility for all GMS technical support. Frequently involved in assisting GMS users in solving a wide range of modeling problems. Worked with model developers to create interfaces in GMS for several advanced flow and transport models in GMS, including FEMWATER, MODFLOW, MT3D, RT3D, SEEP2D, SEAM3D, UTCHEM, and several geostatistical methodologies. Developed numerous example flow and transport scenarios for these models, and worked with developers and users in testing and refining these model interfaces.

Specific Training Experience

For the past several years, Mr. Davis has taught groundwater modeling classes throughout the United States and across the world. These classes are often sponsored by organizations such as NGWA, ASCE, and IAH. The classes are generally attended by engineers, geologists, and hydrogeologists, and cover topics ranging from groundwater flow and transport concepts and modeling and GIS modeling and data management. Course locations include: Belgorod, Cairo, Belgrade, Prague, Liege, Pretoria, Toronto, Gothenburg, Berlin, Calama, Zacatecas, Seoul, Copenhagen, Brisbane, Hyderabad, and also many locations here in the United States (Utah, California, Nevada, Colorado, Texas, Louisiana, Maryland, Virginia, Rhode Island, Pennsylvania, Georgia, Illinois, Washington D.C., and Florida.)

Specific GIS Experience

Mr. Davis extensively uses GIS (namely ArcGIS) in both consulting and teaching arenas. Mr. Davis has taught numerous courses on the use of GIS with groundwater modeling and water resource modeling in general. He developed course materials for GIS and Arc

Hydro Groundwater Data Model and Tools which is a standard for storing, managing, and visualizing groundwater data.

Software Development

Mr. Davis has eight years' experience in developing the GMS (Groundwater Modeling System) at the Environmental Modeling Research Laboratory at Brigham Young University. He has worked three years as a part-time programmer and five years as a full-time software development manager, responsible for all aspects of GMS development, including leading a team of other full-time software managers and part-time programmers. GMS is a sophisticated graphical environment for groundwater model pre- and post-processing, 3D site characterization, and geostatistics. GMS is the official groundwater application of the Dept. of Defense and is widely used in the Dept. of Energy and the Environmental Protection Agency. There are thousands of commercial users in over ninety different countries.

CLE International

Mr. Davis has been an invited presenter for a number of seminars on hydraulic fracturing and groundwater protection and produced water treatment, beneficial reuse, and disposal. CLE International has been a provider of continuing professional education programs throughout the United States and Canada. Its seminars focus on the cutting edge of emerging legal issues of vital importance to attorneys and their clients, real estate professionals, accountants, consultants, and government agencies.

Presentations

APPENDIX D

DESCRIPTION OF PROPOSED LSGPS CGA BOUNDARY

Segment 1: Beginning at the south edge of the Yellowstone River due north of the NW corner of parcel 03-1033-26-1-02-04-0000 and proceeding south to the NW corner of parcel 03-1033-26-1-02-04-0000,

Segment 2: then proceeding south to the SW corner of parcel 03-1033-26-1-02-04-0000,

Segment 3: then proceeding east to the SE corner of parcel 03-1033-26-1-02-04-0000,

Segment 4: then proceeding south to the NW corner of the Klenck Lane right-of-way (parcel 03-8888-44-44-44-0000),

Segment 5: then proceeding northeast to the NE corner of the Klenck Lane right-of-way,

Segment 6: then proceeding south 55 feet along the Klenck Lane right-of-way,

Segment 7: then proceeding southeast to the SE corner of parcel 03-1033-26-4-13-01-0000 at the north boundary of the Montana Rail Link right-of-way,

Segment 8: then proceeding southeast across the Montana Rail Link right-of way and the Lockwood Road right-of-way to the northernmost point of parcel 03-1033-26-4-07-01-0000,

Segment 9: then proceeding southwest across parcel 03-1033-26-4-07-01-0000 to the NE corner of parcel 03-1033-26-4-05-09-0000,

Segment 10: then proceeding south to the SE corner of parcel 03-1033-26-4-04-04-0000,

- Segment 11: then proceeding southeast across the U.S. Interstate 90 right-of-way to the NE corner of parcel 03-1033-26-4-02-10-0000,
- Segment 12: then proceeding south to the SE corner of parcel 03-1033-26-4-02-10-0000 at the north Highway 87 right-of-way,

Segment 13: then proceeding south 27 feet along the Highway 87 right-of-way,

Segment 14: then proceeding northeast 102 feet along the Highway 87 right-of-way,

Segment 15: then proceeding southeast 41 feet along the Highway 87 right-of-way,

Segment 16: then proceeding southwest 7 feet along the Highway 87 right-of-way,

Segment 17: then proceeding southeast 70 feet along the Highway 87 right-of-way,

Segment 18: then proceeding south across parcel 03-1033-25-3-01-01-0000 and the Baxter Lane right-of-way to the NE corner of the Cherry Street right-of-way (parcel 03-8888-44-4-44-0000),

Segment 19: then proceeding south to the NE corner of parcel 03-1033-35-1-23-08-0000,

Segment 40: then proceeding northeast along the Cerise Road right-of-way to the NW corner of parcel 03-1033-26-3-02-12-0000,

Segment 41: then proceeding southeast to the SW corner or parcel 03-1033-26-3-02-12-0000,

Segment 42: then proceeding northeast along the southern boundary of parcel 03-1033-26-3-02-12-0000 through the easternmost point of parcel 03-1033-26-3-04-01-0000 to a point within the Cerise Road right-of-way due south of the SW corner of parcel 03-1033-26-3-06-10-0000,

Segment 43: then proceeding north to the SW corner of parcel 03-1033-26-3-06-10-0000,

Segment 44: then proceeding north to the NW corner of parcel 03-1033-26-3-06-10-0000,

Segment 45: then proceeding west to the SW corner of parcel 03-1033-26-3-06-11-0000,

Segment 46: then proceeding north across parcel 03-1033-26-3-01-20-0000 and the Island Park Road right-of-way to the SE corner of parcel 03-1033-26-3-09-02-0000,

Segment 47: then proceeding west to the SE corner of parcel 03-1033-26-3-08-02-0000,

Segment 48: then proceeding north 480 feet along the east boundary of parcel 03-1033-26-3-08-02-0000 to a corner of parcel 03-1033-26-3-08-02-0000,

Segment 49: then proceeding west across parcel 03-1033-26-3-08-02-0000 to a point on the west boundary of parcel 03-1033-26-3-08-02-0000,

Segment 50: then proceeding north along the west boundary of parcel 03-1033-26-3-08-02-0000 and ending at the south edge of the Yellowstone River. Segment 20: then proceeding south to the SE corner of parcel 03-1033-35-1-23-13-0000,

Segment 21: then proceeding west 5 feet to the NW corner of parcel 03-1033-35-1-15-06-0000,

Segment 22: then proceeding south to the SW corner of parcel 03-1033-35-1-15-06-0000,

Segment 23: then proceeding west to the NE corner of parcel 03-1033-35-1-14-03-0000,

- Segment 24: then proceeding south to the SE corner of parcel 03-1033-35-1-14-03-0000 at the south edge of Rosebud Lane,
- Segment 25: then proceeding west along the south edge of Rosebud Lane to the NW corner of parcel 03-1033-35-1-05-06-0000,

Segment 26: then proceeding north to the centerline of Rosebud Lane,

Segment 27: then proceeding west along the centerline of Rosebud Lane to the midpoint of the intersection with Rosebud Lane and Coburn Road,

Segment 28: then proceeding northwest to the SE corner of parcel 03-1033-35-2-01-06-0000,

- Segment 29: then proceeding along the east boundary of parcel 03-1033-35-2-01-06-0000 to the NE corner of parcel 03-1033-35-2-01-06-0000,
- Segment 30: then proceeding along the north boundary of parcel 03-1033-35-2-01-06-0000 to the northernmost point of parcel 03-1033-35-2-01-06-0000 at the U.S. Interstate 90 right-of-way,
- Segment 31: then proceeding west across the U.S. Interstate 90 right-of-way to the SE corner of parcel 03-1033-35-2-02-05-0000,
- Segment 32: then proceeding west to the SW corner of parcel 03-1033-35-2-02-05-0000,
- Segment 33: then proceeding west to a point on the east boundary of parcel 03-1033-35-2-02-08-0000,
- Segment 34: then proceeding north along the east boundary of parcel 03-1033-35-2-02-08-0000 to the NE corner of parcel 03-1033-35-2-02-08-0000,
- Segment 35: then proceeding west along the north boundary of parcel 03-1033-35-2-02-08-0000 to the south Highway 87 right of way,
- Segment 36: then proceeding northwest across the Highway 87 right-of-way to the SE corner of parcel 03-1033-35-2-03-01-2001,
- Segment 37: then proceeding northwest to the NE corner of parcel 03-1033-35-2-03-01-2001 at the south Montana Rail Link right-of-way,
- Segment 38: then proceeding northeast across the Montana Rail Link right-of-way to the SE corner of parcel 03-1033-26-3-02-01-0000,

Form 630 Checklist N/7/2002

SIDE A

439-30110019

<u>Petition for</u> <u>Controlled Groundwater Area Checklist</u>

Petition Name	Ockwood Solvent GW Plume Site Reviewed by:
Contact Person	Roger Hoogerheide - EPA Jim Sullivan - TASMAN
FORM CHEC	K - Facts submitted to support alleged situations exist or are likely to occur.
🗆 Yes 🗖 No	Ground water withdrawals in the area are greater than the aquifer recharge.
🗆 Yes 🗆 No	Excessive ground water withdrawals are likely to occur in the near future.
🗆 Yes 🗆 No	There are significant disputes involving ground water rights in the area.
□ Yes □ No	Ground water levels or pressures are declining.
□ Yes □ No	Excessive ground water withdrawals would cause contaminant migration.
🗆 Yes 🗆 No	Ground water withdrawals will affect ground water quality.
□ Yes □ No	Water quality in the ground water area is not suited for a specific beneficial use.
🗆 Yes 🗆 No	Notice list prepared by petitioners (Must include all ground water users in DNRC records within the petition area; land owners, well drillers, agencies, local government)
🗆 Yes 🗆 No	Petition includes request for proposed provisions.
🗆 Yes 🗆 No	Map (showing the boundaries of the proposed CGWA & location of all ground water user's wells)
🗆 Yes 🗖 No	Signatures (petition is filed by a representative of a state or locate public health agency OR by at least 25% or 20, which ever is less, of the ground water users in the proposed controlled area.

Controlled Ground Water Area Processing Check

ENVIRONMENTAL ASSESSMENT

□ Yes □ No Environmental Assessment Completed

Date:

HEARING

Location: _____ Date and Time _____

PUBLIC NOTICE - Notice must be published once a week for 3 weeks, with the last notice being at least 30 days before the date of hearing. Public notice must include the following.

Publication Dates:

□ Yes □ No Names of Petitioners □ Yes □ No Legal Description of the proposed CGWA □ Yes □ No Purpose of Hearing □ Yes □ No Time and Place of Hearing

INDIVIDUAL NOTICE

🗆 Yes 🗖 No	Petition and Hearing Notice mailed to Well Drillers whose address in within the CGWA county
🗆 Yes 🗆 No	Petition and Hearing Notice mailed to individuals or agencies appropriating ground water shown in department
	records
🗆 Yes 🗖 No	Petition and Hearing Notice mailed to Bureau of Mines and Geology
🗆 Yes 🗆 No	Petition and Hearing Notice mailed to mayor or presiding office of each incorporated municipality located within the
	proposed area
🗆 Yes 🗖 No	Petition and Hearing Notice mailed to other entities the department feels may be interested in or impacted by the
	proposed CGWA designation.

FINAL ORDER - Final Order must be published once a week for 3 weeks.

Publication Dates:

FINAL ORDER - INDIVIDUAL NOTICE

🗆 Yes 🗆 No	Written Findings and Order mailed to each Petitioner
🛛 Yes 🗖 No	Written findings and Order mailed to Well Drillers whose address in within the CGWA county
🗆 Yes 🗖 No	Written findings and Order mailed to individuals or agencies appropriating ground water shown in department
	records
🗆 Yes 🗖 No	Written findings and Order mailed to Bureau of Mines and Geology
🗆 Yes 🗖 No	Written findings and Order mailed to mayor or presiding office of each incorporated municipality located within the
	proposed area
🗆 Yes 🗖 No	Written findings and Order mailed to other entities the department feels may be interested in or impacted by the
	proposed CGWA designation.
🗆 Yes 🗖 No	Copy filed with County Clerk & Recorder of each county where the petition is located. (Clerk cannot require fee.)