

Mill Creek Drainage Quick Facts

- 19.7 square miles (12,608 acres)
- 95% evergreen/conifer forest
- Average basin slope 29 %
- Elevations ranges from 2972-7050 ft amsl (4633 mean)
- Average precipitation ~23 inches (Bassoo Peak average=22 in)
- Mean daily flow of 3.3ocfs (1994-2024)
- Average temperature 40.6F

Why Mill Creek?

- It supplies irrigation water to the Little Bitterroot River/Camas A Canal for the Hot Springs area
- Water supply forecasts have not reflected real-time, on the ground conditions
- Water supply for this area has been observed by water users/managers as "lower than normal" in recent years
- Ecological value to local terrestrial and aquatic species
- Mill Creek has the only natural flow gage in the area with long term data
- This basin evaluation looks at 30 years of data in an attempt to unravel a complicated mixture of factors that lead to inconsistent water supply

Fire

Burn Severity Map of Chippy Creek Fire, 2007

- The Mill Creek
 Drainage was
 significantly
 impacted by the
 Chippy Creek Fire in
 2007, and, to a
 lesser degree by the
 Mill Pocket Fires in
 2023 and 2024.
- Post fire conditions in headwater stream systems affect streamflow and snowpack

How Fire Impacts Water Supply

Decreases vegetative cover

- Decreases
 evapotranspiration/interception,
 leading to increased magnitude
 and impacts timing of runoff after
 precipitation events
- Less groundcover to protect snowpack impacts the magnitude and timing of snowmelt
- Increases stream temperatures

Changes soil structure/stability

- Decreases water's ability to infiltrate= depleted soil moisture
- Water repellant soil leads to increased runoff
- Increases flood risk

Source: wdr.water.usgs.gov

Fire Influences Streamflow Volume

Total Annual Streamflow per water year from Mill Creek in Acre Feet (1994-2024). Orange line depicts timing of Chippy Creek Fire, black line is average 6964.6 AF. (from CSKT site #312100 Mill Creek above Bassoo Creek near Niarada, MT.)

Fire Impacts on Peak Flows

Pre-Chippy Creek Fire: Average date of peak discharge: **May 7** Average value of peak discharge: **28 cfs**

Post Chippy Creek Fire: average date of peak discharge: **April 28** Average value of peak discharge: **94.85 cfs**

This demonstrates that postfire conditions can not only affect the magnitude of peak flows, but also the timing.

Annual Peak Streamflow Timing and Magnitude from Mill Creek in CFS (1994-2025). Orange line depicts Chippy Creek Fire. (Instantaneous data from CSKT site #312100 (USGS site #12374250) Mill Creek above Bassoo Creek near Niarada, MT)

Climate Data

Average Temperature 1971-2000 **45.5** ° F 1994-2024 **47** ° F

+1.5°F

Average Precipitation
1971-2000 **14.95** in 1994-2024 **11.3** in

-3.65in

Data from Western Regional Climate Center RAWS

Snow Pack Data

Bassoo Peak SNOTEL, black line indicating 2024-2025 season and earlier melt out, April 21 vs average of April 30. (NRCS)

Groundwater

A 2004 study on groundwater resources by MT Bureau of Mines and Geology states that

"...the long-term water-level trend is downward, indicating that artesian pressure in the aquifer is being lost."

-Ground-Water Assessment Atlas 2

Implications

The combination of post fire conditions, increased temperatures, and decreased precipitation in the Mill Creek watershed has made water availability hard to predict.

Next steps?

- Address/adjust how water is managed upstream and downstream
- Look for options for additional storage
- Increase water use efficiency

Questions Discussion

