

Disaster Risk Reduction (DRR) Training Beyond Codes Risk Based Life Cycle Planning David Vaughn September 14, 2020

Resilience and Sustainable Development

Economy

Economic growth coupled w/ strong tax base
 Diverse composition of economic sectors
 Healthy mix of industries private, public & NGOs
 Achieves market expansion, economic stability & efficiency

Environment Combines Built & Natural Environment using: - System of Systems Approach - Selective geographic use - Recovery Time Objective (RTO) based design using Redundancy, Rapidity, Resourcefulness, Robustness & Adaptation - Healthy ecosystems & biodiversity Personal Individual Resilience & Sustainability

Social

- Highly skilled workforce
- Fully functional education systems
- Appropriate technology
- Social accountability
- Local self-reliance
- Low crime rate
- Empowerment
- Participation

Resilience is the ability to adapt to changing conditions, anticipate risk, limit the impacts, and recover rapidly.

Foundations:

- **1. We can identify the threats**
- 2. We can model the threats to predict the effects (risk)
- 3. We can create risk management strategies to counter the negative effects

Four Players Create a Risk Ecosystem

Scenario – Emergency Operations Center in Miami Beach, Florida

- Role is to coordinate all emergency preparedness and response for any emergency that may arise in Miami Beach
- Citizens depend on the support of the EOC
- Designed to withstand extreme hurricanes and be fully operational and selfcontained for 168 hours (1 week)
 - Includes structural design, food, water, communications, etc.

http://www.eri-intl.com/eoc_case_study.pdf

Types of Threats

Notice vs. z	ero-notice	Natural Hazards – Geological
 Black ele Black sw Gray Rhi Black Je 	ephants vans nos Ilyfish	 Earthquake Tsunami Volcano Landslide, mudslide, subsidence Glacier, iceberg
Known Knowns	Known Unknowns	 Natural Hazards – Meteorological Drought Windstorm, tropical cyclone, hurricane, tornado, waterspout, dust / sandstorm Extreme temperatures (head, cold)
Unknown Knowns	Unknown Unknowns	 Lightning strikes Snow, ice, hail, sleet, avalanche Natural Hazards – Biological Diseases (pandemic) Animal or insect infestation or damage

a va

Natural Disaster Summary 1900 to 2011

SYSTEMS ANALYTICS CENTER AT CLEMSON UNIVERSITY

Natural Disaster Summary 1900 to 2011

TEMS ANALYTICS CENTE

Deaths from natural disasters decrease while frequency of events and number of affected

Population Shifts to Vulnerable Regions

- In 2010, 39% of the U.S. population lived in coastal shoreline counties, which represent less than 10% of the U.S. land area
- Population density in coastal areas expected to increase at more than three times the national average between 2010 and 2020

US Census Population 1900

Population & Industry Densities (Business Analyst) in Hurricane & Earthquake Hazard Zones

Emphasis on Increased Risk

Number of Natural Catastrophes with at Least \$1 Billion in Economic Loss and / or 50 Fatalities

Source: Munich Re: 2013 Natural Catastrophe Year in Review

But We Have Insurance - Why Reduce Risk?

- Sales/customer loyalty
- Unrecoverable costs
- Shareholder confidence Local tax base
- Employee retention
- Productivity and innovation

- Insurance premiums
- Employee lives
- Revenue
- Regional economic recovery
- Regulatory compliance

The Impact on Shareholder Value

Risk Based Life Cycle Planning

Enterprise Resilience

Enterprise Planning	Location Strategies	Resilient Design	Pre-Event Planning	Post-Event Recovery	
 Business continuity plan (BCP) - NFPA 1600 Map supply chain dependencies 	 Site selection 	 Criticality reviews 	 Site assessment 	 Response 	
	 Real estate 	 All hazard 	 Hazard modeling 	 Recovery 	
	negotiations	assessment	 Risk mitigation Preparedness & planning 	 After action 	
	 Technical due diligence 	 Design threat determination 		review & lessons learned	
 Threat identification 	 Disposal of 	 Multi-discipline resilient design 	planning		
 High level 	assets				
vulnerability assessments	 Incentives for retained/ 				
 Prioritize spending 	expanded facilities				
 Insurance negotiations 					

- Risks prioritized based upon likelihood and severity
- Likelihood is the probability of occurrence in each time period
- Severity is the consequence of occurrence
 - Due to downtime, economic loss, environmental impact, societal impact, or lives lost

Enterprise Planning Location Strategies Resilient Design Pre-Event Planning Post-Event Recovery

Risk Management

- Primary disaster risk management techniques:
 - Avoidance
 - Location
 - Reduction
 - Mitigation
 - Transference
 - Insurance
 - Acceptance

Enterprise Planning Location Strategies Resilient Design Pre-Event Planning Post-Event Recovery

Enterprise Planning

- BCP Alignment
- Map Supply Chain Dependencies
- Threat Identification
- High-Level Vulnerability Assessments
- Prioritize Spending
- Insurance Negotiations

Enterprise Planning Location Strategies

Resilient Design Pre-Event Planning Post-Event Recovery

Why Enterprise Planning?

Hurricane Katrina₁

 Nearly 7,900 businesses in southeast Louisiana shut down between the 2nd quarter of 2005 and 4th quarter of 2006

Tohoku, Japan Earthquake/Tsunami₂

- Post-event, Toyota announced expected 2012 operating profit to fall by 35%
- In June 2012, Honda announced profit decreased 63.5% from previous year

1 http://usatoday30.usatoday.com/money/smallbusiness/2007-08-28-katrina-finances_N.htm 2 http://www.tthlaw.com/assets/PubArticles/Trembly%20-

%20Lessons%20from%20Japan%20(Bests%20Review%20Mag%20Aug%202011).PDF

Location Strategies Resilient Design

Value Chain Process Mapping (VCPM)

- Value chain- the process used to deliver a company's goods or services
- VCPM identifies critical nodes and interdependencies
- Shows cascade effects of outages

Location

Enterprise

Planning

- Critical nodes can include equipment, process units, or entire sites (depending on desired granularity)
- Identifies internal vulnerabilities and vulnerabilities among suppliers

Resilient

Pre-Event

Post-Event

Recovery

Value Chain Process Map Enterprise Level Aerospace Example

in the second

Value Chain Process Map Assessing Criticality

- Criticality assessed using critical path method
- ACDF is critical path in this example

Value Chain Process Map Enterprise Geographic Susceptibility

Enterprise Planning

Location Strategies

Resilient Design Pre-Event Planning

Post-Event Recovery

Value Chain Process Map Detailed Site Exposure- Charleston

Enterprise Planning Location Strategies Resilient Design Pre-Event Planning

Post-Event Recovery

Location Strategies

- Geographic optimization of assets
- Site selection
 - Logistics
 - Threats
 - Workforce
 - Environment
 - o Infrastructure
- Incentive negotiations
 - Tax breaks
- Real estate negotiations and valuation
- Technical asset due diligence

Issue Request for Proposal
56 Proposals from 17 Countries
"Must Haves" Screening
25 Retained Sites
"Wants" Scoring and Preliminary Financials
8 Shortlisted Sites
Virtual Site Tours
5 Site Visits
Financial and Risk Analysis
Finalists

Enterprise Location Resilient Pre-Event Post-Ever Planning Strategies Design Planning Recovery

Resilient Engineering

- It is more cost-effective to build in resilience than to retrofit
- Value engineering is shortsighted and can eliminate resilience
- Resilient engineering should be based upon recovery time objective (RTO) and a design threat

Project Schedule

Post-Event

Recovery

Location Strategies Resilient Design Pre-Event Planning

What Do You Need To Know To Start Planning? What Is Critical?

- Recovery Time Objective (RTO)
 - How long can your operations be off-line?
 - Do you have any single points of failure?
 - Is redundancy built into your production process?
- Threat Hazard Identification and Risk Assessment (THIRA)
 - Have you identified all your threats?
 - What size threat do you use for planning purposes?
 - Likelihood: Probabilistic vs. Deterministic approaches

What are the threats?

- NOAA declared 2017 the costliest year on record
 - 16 events with total costs \$306 billion, eclipsing 2004 record of \$100 billion

Natural Hazard Mitigation Saves: 2019 Report

The 2019 Report represents the most exhaustive benefit-cost analysis of natural hazard mitigation, from adopting up-to-date building codes and exceeding codes to addressing the retrofit of existing buildings and utility and transportation infrastructure.

https://www.nibs.org/page/mitigationsaves

Planning

Location

Strategies

Resilient

Design

National Institute of BUILDING SCIENCE

NATURAL HAZARD MITIGATION SAVES

Recovery

2019 REPORT

Innovative Solutions for the Built Environmen

Pre-Event

RESA RESA RISK ENGINEERING AND SYSTEMS ANALYTICS CENT AT CL PHYSICO LUMYERSTON

27

Is there a Return on Investment?

National Institute of Building Sciences (NIBS)

Natural Hazard Mitigation Saves: 2019 Report:

/)	National Institute of BUILDING SCIENCES ^{**}	Overall Benefit-Cost Ratio Cost (\$ billion) Benefit (\$ billion)	ADOPT CODE 11:1 \$1/year \$13/year	ABOVE CODE 4:1 \$4/year \$16/year	BUILDING RETROFIT 4:1 \$520 \$2200	LIFELINE RETROFIT 4:1 \$0.6 \$2.5	FEDERAL GRANTS 6:1 \$27 \$160
Ē	Riverine Flood		6:1	5:1	6:1	8:1	7:1
Ø	Hurricane Surge		not applicable	7:1	not applicable	not applicable	not applicable
ရို	Wind		10:1	5:1	6:1	7:1	5:1
<u>م</u>	Earthquake		12:1	4:1	13:1	3:1	3:1
3	Wildland-Urban Interface Fire		not applicable	4:1	2:1		3:1
	Convicient © 2019 The National Institute of Building Sciences						

Location Strategies

Resilient Design Pre-Event Planning Post-Event Recovery

FEMA - National Mitigation Investment Strategy (NMIS)

- Threats and Hazard Identification. Build cooperation between private and public sectors by protecting internal interests but sharing threats and hazard identification resources and benefits.
- Risk and Disaster Resilience Assessment. Perform credible risk assessments using scientifically valid and widely used risk assessment techniques.
- Planning. Incorporate the findings from assessment of risk and disaster resilience into the planning process.
- Community Resilience. Recognize the interdependent nature of the economy, health and social services, housing infrastructure and natural and cultural resources within a community.

FEMA - National Mitigation Investment Strategy (NMIS)

- Public Information and Warning. Target messages to reach organizations representing children, individuals with disabilities or access and functional needs, diverse communities and people with limited English proficiency.
- Long-Term Vulnerability Reduction. Adopt and enforce a suitable building code to ensure resilient construction.
- Operational Coordination. Capitalize on opportunities for mitigation actions following disasters and incidents.

Resilient Engineering Major Pharmaceutical Company

- Location: Vacaville, California
- Scope: EPV, 2004 2006
- TIC: \$800 million
- Integrated engineering, procurement, and validation
- 380,000 square feet
- Built on unique seismic base isolators. All process support operations were designed in modular equipment arrays to secure the schedule
- Design basis exceeded Life Safety Code, targeted critical systems using robust design with redundancies to support low recovery time objective

Enterprise Planning Location Strategies Resilient Design Pre-Event Planning

t Post-Event Recovery

Resilience Model

Enterprise Location Resilient Pre-Event Post-Event Planning Strategies Design Planning Recovery

Contraction of the second

Resilience Model In Detail

Dimensions of Resilience

- Governance
- Financial
- Facilities
- Security
- Logistics
- Equipment
- Employees
- Infrastructure
- Critical Utilities
- Communications
- Information Technology
- Supply Chain Management

Enterprise

Planning

Strategies

HAZUS Model – Hurricane

Location: Charleston, SC

Event: Hugo

Output: Sustained Winds

HAZUS Model – Hurricane

Location: Charleston, SC

Event: Hugo

Output: Displaced Households

HAZUS Model – Earthquake

Location: Charleston, SC

Event: 6.6 to 7.3 Richter Scale

Output: Peak Ground Velocity

HAZUS Model – Earthquake

Location: Charleston, SC

Event: 6.8 Richter Scale

Output: Bridges Sustaining Moderate Damage

Resilience Model

Risk Based Life Cycle Planning

Enterprise Resilience

Enterprise Planning	Location Strategies	Resilient Design	Pre-Event Planning	Post-Event Recovery	
 Business continuity plan (BCP) – NFPA 1600 	 Site selection 	 Criticality reviews 	 Site assessment 	 Response 	
	 Real estate 	 All hazard 	 Hazard modeling 	 Recovery 	
 Map supply chain dependencies 	negotiations	assessment	 Risk mitigation Preparedness & planning 	 After action 	
	 Technical due diligence 	 Design threat determination 		review & lessons learned	
 Threat identification 	 Disposal of 	 Multi-discipline resilient design 	planning		
 High level 	assets				
vulnerability assessments	 Incentives for retained/ 				
 Prioritize spending 	expanded facilities				
 Insurance negotiations 					

