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Introduction 
In 2019, Montana DNRC’s Water Management Bureau developed a forecast of streamflow generated 

from snowmelt to aid water commissioners, water users and other parties interested in the Teton River 

Distribution Project. This document describes the data and methods used to develop the streamflow 

forecast model. The goal of this effort is to provide forecasts of runoff, generated from snowmelt in the 

mountainous headwaters of the North and South Forks of the Teton River, to aid in local decision-

making and water distribution. 

Available Data 
Streamflow Forecast 

The Natural Resources Conservation Service (NRCS) forecasts a streamflow (April 1 to July 31) volume at 

the United State Geological Survey (USGS) gage (06108000) Teton River near Dutton, which is below 

most diversions on the Teton River. The DNRC recognized that a forecast of the amount of water 

potentially available in the Teton River above the Dutton gage may also be useful to water users. 

Snowpack 

Snow-accumulating mountainous areas of the Teton River comprise approximately seven percent of the 

watershed. This small area, ranging from 5,500 to 9,000 feet in elevation, generates most of the water 

available in the Teton River.  

Mountain snowpack is measured by the NRCS to forecast water supply. A common measure of 

snowpack is Snow Water Equivalent (SWE), which is the amount of water contained (in inches) in the 

snowpack. The NRCS maintains two types of sites in the mountains in and around the Teton River:  

• SNOTEL (Snowpack Telemetry) stations remotely measures both Snow Water Equivalent (SWE) 

and precipitation in near real-time.   

• Snow Course sites involve a manual measurement of SWE at a specific location once a month. 

NRCS currently maintains two SNOTEL stations and one snow course site in the North Fork of the Teton 

drainage. Other nearby sites include one SNOTEL site in Birch Creek and two snow course sites in the 

North Fork of the Sun River drainage (Table 1). 

Station Name Site Type ID Watershed Lat Long 
Elevation 

(ft) 

Wrong Creek Snow Course 12B04 N.F Sun 47.87 -112.93 5,700 

Wrong Ridge Snow Course 12B04 N.F Sun 47.91 -112.92 6,800 

Mount Lockhart SNOTEL 649 N.F Teton 47.92 -112.82 6,400 

Waldron SNOTEL 847 N.F Teton 47.92 -112.79 5,600 

Freight Creek Snow Course 12A01 N.F Teton 48.01 -112.82 6,000 

Badger Pass SNOTEL 607 N.F Birch Cr 48.13 -113.02 6,900 

Table 1: List of sites providing mountain SWE and precipitation data in and near the Teton Watershed. 
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The NRCS SNOTEL sites provide data back to 1979, while Snow Course sites date back to 1948 in certain 

locations. The normal peak snowpack in the Teton occurs in mid-April and the snowpack is normally 

melted at or below the elevations of the snow monitoring sites by June 1. 

 
Figure 1:  Map of SNOTELl sites and the USGS gage used in the forecast 

 

Precipitation 

Precipitation is recorded at the Mt. Lockhart, Waldron and Badger Pass SNOTEL sites (Figure 1). Late 

spring and early summer precipitation can enhance water supply and flooding. Large rain events in May 

of 2008 and June of 2018 markedly boosted runoff and the annual water supply. Precipitation data from 

the National Weather Service (NWS) Choteau Airport weather station (NOAA 2019) was used to help 

determine the start and end dates of the 2008 and 2018 rain events. 

Flow 

The USGS gage (06102500) Teton River below South Fork (TRSF) was used as the site for developing the 

streamflow forecast. The TRSF gage is located above most diversion on the Teton River. The period of 

record for the gage is 1947-1954 (year-round), 1998-2015 (April 1 to November 1), 2015-Present (year-

round).   
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Climate Teleconnection  

The accumulation of snowpack along the Rocky Mountain front is influenced by global patterns of 

atmospheric pressure and circulation, which influence the strength and position of the jet stream (CPC 

2019). The Climate Prediction Center (CPC) of the Nation Weather Service uses the term “teleconnection 

pattern” to describe these global atmospheric systems. The CPC produces ten climate teleconnection 

indices monthly, which can improve streamflow forecasts. 

Streamflow Volume Forecast Development 
Methods  

DNRC staff researched methods used by the NRCS, NWS, Army Corps of Engineers, and the Bureau of 

Reclamation to develop streamflow volume forecasts. The principal components analysis (PCA) and 

regression method described by Garen (1992) and NRCS (2011) was selected for use in the Teton Basin. 

Principle components regression is a statistical method which allows the use of highly correlated data as 

explanatory variables in a forecast model.  For example, snowpack (SWE) and precipitation data 

collected from several stations in a small geographic area will be correlated with each other (they all 

experience similar storm systems). This "self" or autocorrelation must be accounted for in statistical 

forecasting or the results will appear to have much better predictive capability (i.e. lower uncertainty in 

the forecast) than in reality.  

Principle Component Analysis restructures intercorrelated sets of data into equal sets of uncorrelated 

data (Garen 1992).  The uncorrelated principle components can then be used to develop a linear 

regression between the response variable (Flow Volume, April 1 to July 31 for March and April forecasts, 

May 1 to July 31 for May forecast) and the explanatory variables (SWE, precipitation, antecedent flow 

conditions, climate teleconnection index). The open source statistical software program R Studio 

(Version 1.1.463) and Microsoft Excel were used for the computation and analysis of the streamflow 

forecast. 

Forecast Issuance  

Streamflow forecast certainty increases with time; a forecast issued close to the peak accumulation of 

snowpack in Mid-April is more likely to accurately forecast the observed streamflow than a forecast 

issued in March. The DNRC will issue three mid-month forecasts (Table 2). This schedule should provide 

time for water users and managers to incorporate streamflow forecasts into their planning for the 

upcoming season. 

Forecast Issuance Latest Data Used Data Types Forecasted Flow Volume 

March 15 March 1 SWE, PPT, PNA April 1 to July 31 

April 15 April 1 SWE, PPT, PNA April 1 to July 31 

May 15 May 1 SWE, PPT, PNA May 1 to July 31 

Table 2:  Forecast issuance dates and data used. PPT= Precipitation, PNA = Pacific North American 
Climate Teleconnection Index. 
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Streamflow Data Adjustments 

Storms in May and June have, at times, dropped several inches of rain along the Rocky Mountain Front 

and in the adjacent mountains, adding significant volumes of water to the Teton River.  Over the recent 

period of record at the TRSF gage (1998-2019), significant rain events occurred in 2008 and 2018. The 

unpredictability and infrequency of rain events led DNRC hydrologist to solely focus on the flow volume 

derived from snowmelt and to not address these large precipitation events.   

Flow data at the TRSF gage were adjusted in 2008 and 2018 to remove high flows generated by rain. The 

period of adjustment was identified by comparing precipitation records at the NWS Choteau and NRCS 

Mt. Lockhart sites to flows at the TRSF gage.  

Flow at the TRSF gage determined the start and end of the rain-affected flow. The data were adjusted 

until the pre-rain flow was observed again at the TRSF gage (14 days in 2008 and 11 days in 2018).  

Careful attention was paid to determine if the rise in streamflow was strictly due to rain or a 

combination of rain and snowmelt. The data were adjusted by reverting to the period of record daily 

mean flow for that time period. 

Selected Time-Period  

Similar NRCS flow- forecasting procedures typically use a near-recent, 30-year period of record (1981-

2010) of streamflow and climate data for flow forecasting.  Streamflow data is limited to the current 

period of record 1998-present at the USGS TRSF gage.  DNRC determined that the 20-year period (1998-

2018) contained sufficient data to develop a robust streamflow forecast model in the Teton. 

Explanatory Variable Selection 

Explanatory variables available for the principle component regression equation include: 

• First of the month precipitation values at three SNOTEL Sites (inches) 

• First of the month SWE values at three SNOTEL sites (inches) 

• Monthly SWE values at three Snow Course sites (inches) 

• Antecedent flow conditions (October flow in acre-feet) 

• Climate Teleconnection Indices (non-dimensional) 

Prior to beginning the Principal Component Analysis and Regression, some of the variables were 

eliminated from consideration.  Specifically, antecedent flow conditions and nine of the ten 

teleconnection indices were discarded due to their low correlation with the response variable.  An 

explanatory variable was discarded if the correlation coeffect (Equation 1) was less than 0.30 (NRCS 

2011). 

 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =

𝐶𝑜𝑣𝑎𝑟𝑖𝑒𝑛𝑐𝑒 (𝑥, 𝑦)

√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑥)𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑦)
 

 

(1) 

X= explanatory variable, y = response variable   
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Principle Components Analysis 

Principle components analysis (PCA) of the explanatory variables (first of the month values for SWE and 

precipitation and the PNA Climate Teleconnection Index) was completed using R. As stated previously 

PCA involves transforming correlated data into an orthogonal, uncorrelated dataset of Principal 

Components (PC)s.  The general PCA process is: 

1. Center and Scale the data =
𝑀𝑒𝑎𝑛 (𝑋1)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑋1) 
      𝑋1= individual explanatory variable 

2. Calculated a Covariance Matrix of [n x n] dimensions  

Covariance(a,b,c,…) =  ∑
(𝑎𝑖−𝑎) (𝑏𝑖−𝑏)(….)

(𝑛−1)
𝑛
𝑖=1    

n = number of samples, a,b,c = explanatory variables , 𝑎 = mean 

3. Calculate the Eigenvalue of the Covariance Matrix 𝜆 = det(A − λI) = 0 

𝜆 = Eigenvalue, A = covariance matrix, I = Identity matrix, det = determinant 

4. Calculate the Eigenvector of the Covariance Matrix  𝜔 = (A − λI)ω = 0 

𝜔 = Eigenvector, A = covariance matrix, I = identity matrix,  

5. Take the Eigen decomposition of the Covariance Matrix  = (𝑋𝑇𝑋) = 𝑆Λ𝑆−1 

X = data matrix, XT = transposed data matrix, S = diagonal matrix of eigenvectors, Λ = diagonal 

matrix of eigenvalues 

6. Determine the proportion of variance that each Principle Component explains. 

7. Decide how many Principle Components to retain. 

8. Multiply the Eigen decomposition Matrix [n x n] by the original centered and scaled data frame 

[n x m] to get a data frame of the original dimension [n x m] with the principle components 

values for each explanatory variable. m = number of measurements (i.e. years of data) 

PCA analysis found that the first Principle Component (PC) explained 72-74% of variance of the 

explanatory variable, with PC1, PC2 and PC3 explaining more than 95% of the variance. 

Principle Components Regression 

Principal Components Regression consists of performing a linear regression of the original explanatory 

variable against the transformed response variables (PCs).  The general process is: 

1. Introduce the response variable into the [n x m] matrix of Principle Components 

2. Linearly regress April 1 – July 31 flow against the first PC.   

3. If the estimated coefficient is statistically significant, add the next PC to the regression. 

4. Continue until the last PC added does not result in a statistically significant coefficient. 

5. Once the initial number of PC regressors has been determined, change (or back-transform) the 

linear regression coefficients back to their original terms (centered and scaled) 

6. Retrieve the Beta coefficients from the linear regression. 

7. Finally, check the algebraic signs of the back-transformed Beta coefficients against their 

correlations with the response variable.  If they are not the same, reject the current PC 

regression model and reduce the number of PCs until the signs agree.  
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During the regression process it was found that first PC was statistically significant for all monthly 

forecast models using the p-values and, at least initially, two PCs were found to be significant in the 

March model. However, the addition of the second PC into the March equation created a negative 

regression coefficient, which is the opposite sign of the correlation between the explanatory variables 

and the response.  

 

The additional PC was rejected based on NRCS documentation (NRCS). PCA reduced the dimensionality 

of the regression equation from eight principle components to one for all three models.  A stepwise 

process was then executed to find the optimal combination of explanatory variables to obtain the 

smallest root mean squared error (RMSE) (Equation 2) (Table 3) for the model prediction.   

 

𝑅𝑀𝑆𝐸 = ∑ √(𝑌̂𝑖 − 𝑌𝑖)
2

𝑛

𝑛

𝑖=1
 

 

(2) 

𝑌̂𝑖 =Observed value, Yi = Model predicted value, N = number of observations 

  March April May 

R2 0.46 0.57 0.78 

Root Mean Square Error  10,051 9,831 7,307 

Standard Error Prediction 16,339 14,764 12,000 

Table 3: Model results from R-Studio for the March, April and May models. 

This stepwise process was undertaken for two reasons:  1) to re-examine and confirm the earlier 

decision on discarding variables, and 2) to explore the possibility of removing the snow course sites from 

the analysis.  The snow courses, while providing useful information, are highly correlated with the 

SNOTEL sites but not as timely for forecasting.  Given the relatively small forecast area, and relatively 

good SNOTEL coverage, the snow courses were ultimately dropped. 

The final list of explanatory variables used in the model includes:   

• Mt. Lockhart - SWE 

• Mt. Lockhart - Precipitation 

• Waldron - SWE 

• Waldron - Precipitation 

• Badger Pass - SWE 

• PNA - Climate Teleconnection Index 

The PC analysis and regression process was repeated with the final PC regression models (March, April, 

and May) regressing April 1 to July 31 (or May 1 to July 31) flow volume against the first PC for the final 

six explanatory variables. The PC values from the linear regression were multiplied by the PC rotation 

matrix to return the values to their original terms of centered and scaled.  
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Cross Validation 

The ability of the model to predict streamflow was assed using a jackknife, cross-validation technique 

(NRCS 2011). Jackknife analysis gives the hydrologist a better understanding of the model’s prediction 

error (standard error), rather than using validation parameters such as RMSE or R2. 

The Jackknife technique is a process where the response and explanatory variables are left out for one 

year. The model is then recalculated without the omitted data and the model is used to predict 

response variable using the omitted explanatory values for that year. This was repeated for each year of 

a 20-year period. The Jackknife predicted values were then compared to the observed values. The 

standard error (Equation 3) (NRCS 2019) of the sum of the Jackknife predictions were calculated for each 

model (Table 3).  

 

𝑆𝐸 = ∑ √(𝑌̂𝑖 − 𝑌𝑖)
2

𝑁 − Φ

𝑛

𝑖=1
 

 

(3) 

 

𝑌̂𝑖 = Observed value, Yi = Jackknife predicted value, N = number of observations, Φ = number of 

constraints on the model (# of PCs plus the slope).  

The standard error of the Jackknife cross validation was used to determine the prediction intervals of 

the model (e.g. prediction interval = median prediction value +/-  number of standard deviations of 

interest * jackknife standard error).  Note that this assumes a normal, or at least symmetric distribution 

whereby the median and mean are equivalent. 

     

Probability of Exceedance Number of Standard Deviations 

10% -1.282 

30% -0.524 

50% 0 

70% 0.524 

90% 1.282 

 

Uncertainty Associated with the Forecast 
The DNRC streamflow runoff estimation technique follows NRCS methodology using statistical best 

practices and professional judgment. However, like the NRCS, DNRC-generated, or any streamflow 

forecasts contain uncertainty.  Please consider the stated standard error, the R2 and Root Mean Squared 

Error associated with each model when using the predicted flow in your decision-making process. An 

example would be: an April 1-July 31 forecast volume of 50,000 acre-feet is issued with a standard error 

of +/-15,000 Acre-feet.  A forecast user should expect that the range of the forecast value could be 

anywhere from 35,000 to 65,000 acre-feet based on the error associated with the forecast.   
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